我有两个数据表city_pop, 和city_sub。city_pop是平均人口缺失一些值的城市列表。该city_sub表给出了两个可能的city_id(sub_1和sub_2),其avg_pop可以用于填充NA在city_pop。sub_1并按sub_2优先顺序使用。只需要替换中的NA值avg_pop。
如何在不使用 for 循环的情况下执行此操作?
city_id = c(1, 2, 3, 4, 5, 6)
avg_pop = c(100, NA, NA, 300, 400, NA)
city_pop = data.table(city_id, avg_pop)
city_id avg_pop
1: 1 100
2: 2 NA
3: 3 NA
4: 4 300
5: 5 400
6: 6 NA
sub_1=c(2,1,4,3,1,3)
sub_2=c(5,5,6,6,2,4)
city_sub =data.table(city_id,sub_1,sub_2)
city_id sub_1 sub_2
1: 1 2 5
2: 2 1 5
3: 3 4 6
4: 4 3 6
5: 5 1 2
6: 6 3 4
Run Code Online (Sandbox Code Playgroud)
预期输出 -
city_id avg_pop
1 1 100
2 2 100
3 3 300
4 4 300
5 5 400
6 6 300
Run Code Online (Sandbox Code Playgroud)
dplyr这是一种使用coalesce第一个非值的方法NA。我创建了一个单独的列,avg_pop2因为在这种情况下它看起来更安全,并且也可以轻松验证结果。
city_pop %>%
left_join(city_sub, by = "city_id") %>%
mutate(
avg_pop2 = coalesce(
avg_pop, avg_pop[match(sub_1, city_id)], avg_pop[match(sub_2, city_id)]
)
)
city_id avg_pop sub_1 sub_2 avg_pop2
1 1 100 2 5 100
2 2 NA 1 5 100
3 3 NA 4 6 300
4 4 300 3 6 300
5 5 400 1 2 400
6 6 NA 3 4 300
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
215 次 |
| 最近记录: |