高效读取 Spark 中的嵌套镶木地板列

Tom*_*los 7 apache-spark parquet

我有以下(简化的)架构:

root
 |-- event: struct (nullable = true)
 |    |-- spent: struct (nullable = true)
 |    |    |-- amount: decimal(34,3) (nullable = true)
 |    |    |-- currency: string (nullable = true)
 |    |
 |    | ... ~ 20 other struct fields on "event" level
Run Code Online (Sandbox Code Playgroud)

我正在尝试对嵌套字段求和

spark.sql("select sum(event.spent.amount) from event")
Run Code Online (Sandbox Code Playgroud)

根据火花指标,我从磁盘读取 18 GB,需要 2.5 分钟。

但是,当我选择顶级字段时:

 spark.sql("select sum(amount) from event")
Run Code Online (Sandbox Code Playgroud)

我在 4 秒内只读取了 2GB。

从物理计划中我可以看到,在嵌套结构的情况下,所有字段整个事件结构都是从 parquet 中读取的,这是一种浪费。

Parquet 格式应该能够从嵌套结构中提供所需的列,而无需全部读取(这是列式存储的重点)。有没有办法在 Spark 中有效地做到这一点?

Tom*_*los 5

解决方案:

spark.sql("set spark.sql.optimizer.nestedSchemaPruning.enabled=true")
spark.sql("select sum(amount) from (select event.spent.amount as amount from event_archive)")
Run Code Online (Sandbox Code Playgroud)

查询必须以子选择方式编写。您不能将选定的列包装在聚合函数中。以下查询将破坏模式修剪:

select sum(event.spent.amount) as amount from event
Run Code Online (Sandbox Code Playgroud)

SPARK-4502涵盖了整个模式修剪工作

肮脏的解决方法也可以在加载时指定“投影模式”:

val DecimalType = DataTypes.createDecimalType(18, 4)
val schema = StructType(StructField("event", StructType(
      StructField("spent", StructType(
          StructField("amount", DecimalType, true) :: Nil
      ), true) :: Nil
    ), true) :: Nil
  )
 val df = spark.read.format("parquet").schema(schema).load(<path>)
Run Code Online (Sandbox Code Playgroud)