Emm*_*Emm 5 python numpy pandas
我想在路径中找到匹配的字符串并使用 np.select 创建一个新列,其中的标签取决于我找到的匹配项。
这是我写的
import numpy as np
conditions = [a["properties_path"].str.contains('blog'),
a["properties_path"].str.contains('credit-card-readers/|machines|poss|team|transaction_fees'),
a["properties_path"].str.contains('signup|sign-up|create-account|continue|checkout'),
a["properties_path"].str.contains('complete'),
a["properties_path"] == '/za/|/',
a["properties_path"].str.contains('promo')]
choices = [ "blog","info_pages","signup","completed","home_page","promo"]
a["page_type"] = np.select(conditions, choices, default=np.nan)
Run Code Online (Sandbox Code Playgroud)
但是,当我运行此代码时,我收到此错误消息:
ValueError:condlist 中的无效条目 0:应该是布尔值 ndarray
这是我的数据示例
3124465 /blog/ts-st...
3124466 /card-machines
3124467 /card-machines
3124468 /card-machines
3124469 /promo/our-gift-to-you
3124470 /create-account/v1
3124471 /za/signup/
3124472 /create-account/v1
3124473 /sign-up
3124474 /za/
3124475 /sign-up/cart
3124476 /checkout/
3124477 /complete
3124478 /card-machines
3124479 /continue
3124480 /blog/article/get-car...
3124481 /blog/article/get-car...
3124482 /za/signup/
3124483 /credit-card-readers
3124484 /signup
3124485 /credit-card-readers
3124486 /create-account/v1
3124487 /credit-card-readers
3124488 /point-of-sale-app
3124489 /create-account/v1
3124490 /point-of-sale-app
3124491 /credit-card-readers
Run Code Online (Sandbox Code Playgroud)
这些.str方法对对象列进行操作。在这些列中可能有非字符串值,因此pandas返回NaN这些行而不是False. np然后抱怨,因为这不是布尔值。
幸运的是,有一个论据可以处理这个问题: na=False
a["properties_path"].str.contains('blog', na=False)
Run Code Online (Sandbox Code Playgroud)
或者,您可以将条件更改为:
a["properties_path"].str.contains('blog') == True
#or
a["properties_path"].str.contains('blog').fillna(False)
Run Code Online (Sandbox Code Playgroud)
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': [1, 'foo', 'bar']})
conds = df.a.str.contains('f')
#0 NaN
#1 True
#2 False
#Name: a, dtype: object
np.select([conds], ['XX'])
#ValueError: invalid entry 0 in condlist: should be boolean ndarray
conds = df.a.str.contains('f', na=False)
#0 False
#1 True
#2 False
#Name: a, dtype: bool
np.select([conds], ['XX'])
#array(['0', 'XX', '0'], dtype='<U11')
Run Code Online (Sandbox Code Playgroud)