the*_*hon 7 amazon-emr apache-spark pyspark apache-arrow pyarrow
我在使用 Apache Arrow Spark 集成时遇到了这个问题。
使用 AWS EMR 和 Spark 2.4.3
在本地 Spark 单机实例和 Cloudera 集群上测试了这个问题,一切正常。
export PYSPARK_PYTHON=python3
export PYSPARK_PYTHON_DRIVER=python3
Run Code Online (Sandbox Code Playgroud)
spark.version
2.4.3
sc.pythonExec
python3
SC.pythonVer
python3
Run Code Online (Sandbox Code Playgroud)
from pyspark.sql.functions import pandas_udf, PandasUDFType
df = spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
("id", "v"))
@pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP)
def subtract_mean(pdf):
# pdf is a pandas.DataFrame
v = pdf.v
return pdf.assign(v=v - v.mean())
df.groupby("id").apply(subtract_mean).show()
Run Code Online (Sandbox Code Playgroud)
ModuleNotFoundError: No module named 'pyarrow'
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:172)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:122)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:291)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:283)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Run Code Online (Sandbox Code Playgroud)
有人知道发生了什么事吗?一些可能的想法...
PYTHONPATH 是否会因为我没有使用而导致问题anaconda?
和Spark版本、Arrow版本有关系吗?
这是最奇怪的事情,因为我在所有 3 个平台 [本地桌面、cloudera、emr] 中使用相同的版本,只有 EMR 不起作用......
我登录了所有 4 个 EMR EC2 数据节点并测试了我可以导入pyarrow并且它工作得很好,但在尝试使用它时却不行spark
# test
import numpy as np
import pandas as pd
import pyarrow as pa
df = pd.DataFrame({'one': [20, np.nan, 2.5],'two': ['january', 'february', 'march'],'three': [True, False, True]},index=list('abc'))
table = pa.Table.from_pandas(df)
Run Code Online (Sandbox Code Playgroud)
在 EMR 中,默认情况下不会解析 python3。你必须说清楚。config.json一种方法是在创建集群时传递一个文件。它可在Edit software settingsAWS EMR UI 的 部分中找到。示例 json 文件看起来像这样。
[
{
"Classification": "spark-env",
"Configurations": [
{
"Classification": "export",
"Properties": {
"PYSPARK_PYTHON": "/usr/bin/python3"
}
}
]
},
{
"Classification": "yarn-env",
"Properties": {},
"Configurations": [
{
"Classification": "export",
"Properties": {
"PYSPARK_PYTHON": "/usr/bin/python3"
}
}
]
}
]
Run Code Online (Sandbox Code Playgroud)
此外,您还需要pyarrow在所有核心节点中安装该模块,而不仅仅是在主节点中。为此,您可以在 AWS 中创建集群时使用引导脚本。同样,示例引导脚本可以像这样简单:
#!/bin/bash
sudo python3 -m pip install pyarrow==0.13.0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
7253 次 |
| 最近记录: |