mat*_*ick 7 python tensorflow tensorflow2.0
我收到一个错误:
TypeError: An op outside of the function building code is being passed
a "Graph" tensor. It is possible to have Graph tensors
leak out of the function building context by including a
tf.init_scope in your function building code.
For example, the following function will fail:
@tf.function
def has_init_scope():
my_constant = tf.constant(1.)
with tf.init_scope():
added = my_constant * 2
Run Code Online (Sandbox Code Playgroud)
使用如下所示的NVP层:
import tensorflow_probability as tfp
tfb = tfp.bijectors
tfd = tfp.distributions
class NVPLayer(tf.keras.models.Model):
def __init__(self, *, output_dim, num_masked, **kwargs):
super().__init__(**kwargs)
self.output_dim = output_dim
self.num_masked = num_masked
self.shift_and_log_scale_fn = tfb.real_nvp_default_template(
hidden_layers=[2], # HERE HERE ADJUST THIS
activation=None, # linear
)
self.loss = None
def get_nvp(self):
nvp = tfd.TransformedDistribution(
distribution=tfd.MultivariateNormalDiag(loc=[0.] * self.output_dim),
bijector=tfb.RealNVP(
num_masked=self.num_masked,
shift_and_log_scale_fn=self.shift_and_log_scale_fn)
)
return nvp
def call(self, *inputs):
nvp = self.get_nvp()
self.loss = tf.reduce_mean(nvp.log_prob(*inputs)) # how else to do this?
# return nvp.bijector.forward(*inputs)
return nvp.bijector.inverse(*inputs)
Run Code Online (Sandbox Code Playgroud)
我什么都没打电话tf.init_scope。训练像这样的图层的简单版本似乎起作用。
我将尝试获得更详细的跟踪,但是我怀疑这与非紧急模式的东西有关。
更新:因此,这肯定是来自self.loss某些渐变胶带层中的。正确的做法是什么?
几分钟前刚刚遇到了同样的问题,在我的例子中,我想修改我的损失函数类中的状态,以下是我在你的例子中解决它的方法。
顺便说一句,@simon 给了我如何正确评估这一点的灵感。所以支持他!
看来您应该tf.Variable为训练时要更改的属性创建一个。self.output_dim请注意,您对其他属性(如、和其他)没有任何问题self.num_masked。
尝试这个:
import tensorflow_probability as tfp
tfb = tfp.bijectors
tfd = tfp.distributions
class NVPLayer(tf.keras.models.Model):
def __init__(self, *, output_dim, num_masked, **kwargs):
super().__init__(**kwargs)
self.output_dim = output_dim
self.num_masked = num_masked
self.shift_and_log_scale_fn = tfb.real_nvp_default_template(
hidden_layers=[2], # HERE HERE ADJUST THIS
activation=None, # linear
)
###CHANGE HERE
self.loss = tf.Variable(0.0)
def get_nvp(self):
nvp = tfd.TransformedDistribution(
distribution=tfd.MultivariateNormalDiag(loc=[0.] * self.output_dim),
bijector=tfb.RealNVP(
num_masked=self.num_masked,
shift_and_log_scale_fn=self.shift_and_log_scale_fn)
)
return nvp
def call(self, *inputs):
nvp = self.get_nvp()
### CHANGE HERE
self.loss.assign(tf.reduce_mean(nvp.log_prob(*inputs)))
# return nvp.bijector.forward(*inputs)
return nvp.bijector.inverse(*inputs)
Run Code Online (Sandbox Code Playgroud)
也可以在github问题上查看这个答案,类似的问题!
| 归档时间: |
|
| 查看次数: |
671 次 |
| 最近记录: |