将叶子与背景分开

Bms*_*waj 1 python opencv image-processing python-3.x background-subtraction

我有一组图像,所有这些图像看起来几乎都像这里的这片叶子:

低分辨率图像...

我想从背景中提取叶子,为此我使用了此处GrabCut使用的算法。

作为一种不同的方法,我还使用基于 r、g 和 b 值比率的阈值,如下所示:

import numpy as np
import cv2
import matplotlib.pyplot as plt

testImg = cv2.imread('path_to_the_image')
testImg = cv2.resize(testImg, (256, 256))
#bgImg = cv2.imread('')
#blurBg = cv2.GaussianBlur(bgImg, (5, 5), 0)
#blurBg = cv2.resize(blurBg, (256, 256))

#testImg = cv2.GaussianBlur(testImg, (5, 5), 0)
cv2.imshow('testImg', testImg)
#plt.imshow(bgImg)
cv2.waitKey(0)
#plt.show()

modiImg = testImg.copy()    
ht, wd = modiImg.shape[:2]

print(modiImg[0][0][0])

for i in range(ht):
    for j in range(wd):
        r = modiImg[i][j][0]
        g = modiImg[i][j][1]
        b = modiImg[i][j][2]

        r1 = r/g
        r2 = g/b
        r3 = r/b

        r4 = round((r1+r2+r3)/3, 1)

        if g > r and g > b:
            modiImg[i][j] = [255, 255, 255]
        elif r4 >= 1.2:
            modiImg[i][j] = [255, 255, 255]
        else:
            modiImg[i][j] = [0, 0, 0]

        # if r4 <= 1.1:
        #   modiImg[i][j] = [0, 0, 0]
        # elif g > r and g > b:
        #   modiImg[i][j] = [255, 255, 255]
        # else:
        #   modiImg[i][j] = [255, 255, 255]
        # elif r4 >= 1.2:
        #   modiImg[i][j] = [255, 255, 255]
        # else:
        #   modiImg[i][j] = [0, 0, 0]


plt.imshow(modiImg)
plt.show()

testImg = testImg.astype(float)

alpha = modiImg.astype(float) / 255

testImg = cv2.multiply(alpha, testImg)                

cv2.imshow('final', testImg/255)
cv2.waitKey(0)
Run Code Online (Sandbox Code Playgroud)

但在提取的叶子图像中,叶子上的黑点总是丢失,如下所示:

在此输入图像描述

考虑到每个图像只有一片叶子,并且背景与我拥有的其他图像几乎相同,并且叶子的位置几乎与此处类似,是否有任何其他方法将叶子与其背景分开。

Anu*_*ngh 5

您可以尝试使用 HSV 颜色图进行图像分割。

代码:

img =  cv2.imread('leaf.jpg')
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# find the green color 
mask_green = cv2.inRange(hsv, (36,0,0), (86,255,255))
# find the brown color
mask_brown = cv2.inRange(hsv, (8, 60, 20), (30, 255, 200))
# find the yellow color in the leaf
mask_yellow = cv2.inRange(hsv, (21, 39, 64), (40, 255, 255))

# find any of the three colors(green or brown or yellow) in the image
mask = cv2.bitwise_or(mask_green, mask_brown)
mask = cv2.bitwise_or(mask, mask_yellow)

# Bitwise-AND mask and original image
res = cv2.bitwise_and(img,img, mask= mask)

cv2.imshow("original", img)
cv2.imshow("final image", res)
cv2.waitKey(0)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)

输出:

在此输入图像描述 在此输入图像描述

此外,如果将黄色的较低范围从 更改为(21, 39, 64)(14, 39, 64)那么您会看到叶子上存在的小黑点开始填充,并将进一步改善结果。