Cha*_*ker 5 machine-learning neural-network deep-learning conv-neural-network pytorch
我想实现一个 ResNet 网络(或者更确切地说,残差块),但我真的希望它采用顺序网络形式。
我所说的顺序网络形式如下:
## mdl5, from cifar10 tutorial
mdl5 = nn.Sequential(OrderedDict([
('pool1', nn.MaxPool2d(2, 2)),
('relu1', nn.ReLU()),
('conv1', nn.Conv2d(3, 6, 5)),
('pool1', nn.MaxPool2d(2, 2)),
('relu2', nn.ReLU()),
('conv2', nn.Conv2d(6, 16, 5)),
('relu2', nn.ReLU()),
('Flatten', Flatten()),
('fc1', nn.Linear(1024, 120)), # figure out equation properly
('relu4', nn.ReLU()),
('fc2', nn.Linear(120, 84)),
('relu5', nn.ReLU()),
('fc3', nn.Linear(84, 10))
]))
Run Code Online (Sandbox Code Playgroud)
但当然,NN 乐高积木是“ResNet”。
我知道等式是这样的:
但我不确定如何在 Pytorch AND Sequential 中做到这一点。顺序对我来说很关键!
交叉发布:
你不能单独使用它,torch.nn.Sequential
因为它需要操作,顾名思义,按顺序进行,而你的操作是并行的。
原则上,您block
可以像这样轻松构建自己的:
import torch
class ResNet(torch.nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inputs):
return self.module(inputs) + inputs
Run Code Online (Sandbox Code Playgroud)
哪一个可以使用这样的东西:
model = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, kernel_size=7),
# 32 filters in and out, no max pooling so the shapes can be added
ResNet(
torch.nn.Sequential(
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
)
),
# Another ResNet block, you could make more of them
# Downsampling using maxpool and others could be done in between etc. etc.
ResNet(
torch.nn.Sequential(
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
torch.nn.Conv2d(32, 32, kernel_size=3),
torch.nn.ReLU(),
torch.nn.BatchNorm2d(32),
)
),
# Pool all the 32 filters to 1, you may need to use `torch.squeeze after this layer`
torch.nn.AdaptiveAvgPool2d(1),
# 32 10 classes
torch.nn.Linear(32, 10),
)
Run Code Online (Sandbox Code Playgroud)
通常被忽视的事实(在涉及浅层网络时没有真正的后果)是跳过连接应该没有任何非线性,如ReLU
卷积层,这就是你在上面看到的(来源:深度残差网络中的身份映射)。