mag*_*mar 4 python tensorflow tensorflow2.0
我正在使用 API 处理 csv 文件tensorflow.Data。csv 中的一项功能是图像名称。为了加载图像,我需要构建一个将基本文件夹与图像名称相结合的路径。但是,由于图像名称是张量并且基本文件夹是字符串,因此我无法使用 os.path.join 将它们连接起来。我包括下面的代码。
def process_csv_data(folder_path, image_dimensions):
width, height, channels = image_dimensions
def map_function(raw_data):
image_path = os.path.join(folder_path,raw_data['image_name'].numpy().decode('utf-8'))
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=channels)
image = tf.image.resize(image, [width, height])
image /= 255.0 # normalize to [0,1] range
return image
return map_function
Run Code Online (Sandbox Code Playgroud)
前一个函数的使用方法如下:
raw_csv_dataset = tf.data.experimental.make_csv_dataset(
csv_path,
batch_size=1,
column_names=CSV_COLUMNS,
shuffle=False)
dataset = raw_csv_dataset.map(
process_csv_data(folder_path, image_dimensions, mode),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
Run Code Online (Sandbox Code Playgroud)
上面的代码产生这个错误:
AttributeError:“张量”对象没有属性“numpy”
我尝试了几种方法但没有成功,例如将文件夹名称转换为张量并使用tf.strings.join,或将 转换tf.string为标准 python string。那么,什么是正确的方法呢?
我正在使用张量流2.0
只需将字符串与+:
image_path = folder_path + os.sep + raw_data['image_name']
Run Code Online (Sandbox Code Playgroud)
os.sep如果您确实需要路径分隔符(如果它不包含在 中folder_path)并且不想显式使用/或 ,请使用\。
| 归档时间: |
|
| 查看次数: |
1593 次 |
| 最近记录: |