Adr*_*ian 5 python multiprocessing
我编写了一个 Python 类来并行绘制 pylot。它在默认启动方法是 fork 的 Linux 上工作得很好,但当我在 Windows 上尝试它时,我遇到了问题(可以使用生成启动方法在 Linux 上重现 - 请参阅下面的代码)。我总是会遇到这个错误:
Traceback (most recent call last):
File "test.py", line 50, in <module>
test()
File "test.py", line 7, in test
asyncPlotter.saveLinePlotVec3("test")
File "test.py", line 41, in saveLinePlotVec3
args=(test, ))
File "test.py", line 34, in process
p.start()
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\process.py", line 112, in start
self._popen = self._Popen(self)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\popen_spawn_win32.py", line 89, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: can't pickle weakref objects
C:\Python\MonteCarloTools>Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 99, in spawn_main
new_handle = reduction.steal_handle(parent_pid, pipe_handle)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\reduction.py", line 82, in steal_handle
_winapi.PROCESS_DUP_HANDLE, False, source_pid)
OSError: [WinError 87] The parameter is incorrect
Run Code Online (Sandbox Code Playgroud)
我希望有一种方法可以让这段代码适用于 Windows。这里是 Linux 和 Windows 上可用的不同启动方法的链接:https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
Traceback (most recent call last):
File "test.py", line 50, in <module>
test()
File "test.py", line 7, in test
asyncPlotter.saveLinePlotVec3("test")
File "test.py", line 41, in saveLinePlotVec3
args=(test, ))
File "test.py", line 34, in process
p.start()
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\process.py", line 112, in start
self._popen = self._Popen(self)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\popen_spawn_win32.py", line 89, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: can't pickle weakref objects
C:\Python\MonteCarloTools>Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 99, in spawn_main
new_handle = reduction.steal_handle(parent_pid, pipe_handle)
File "C:\Users\adrian\AppData\Local\Programs\Python\Python37\lib\multiprocessing\reduction.py", line 82, in steal_handle
_winapi.PROCESS_DUP_HANDLE, False, source_pid)
OSError: [WinError 87] The parameter is incorrect
Run Code Online (Sandbox Code Playgroud)
使用spawnstart 方法时,Process对象本身将被腌制以供子进程使用。在您的代码中,target=target参数是 的绑定方法AsyncPlotter。看起来整个asyncPlotter实例也必须被腌制才能工作,其中包括self.manager,它显然不想被腌制。
简而言之,保持Manager在 之外AsyncPlotter。这适用于我的 macOS 系统:
def test():
manager = mp.Manager()
asyncPlotter = AsyncPlotter(manager.Value('i', 0))
...
Run Code Online (Sandbox Code Playgroud)
此外,正如您的评论中所述,asyncPlotter重复使用时不起作用。Value我不知道细节,但看起来它与对象如何跨进程共享有关。该test函数需要类似于:
def test():
manager = mp.Manager()
nc = manager.Value('i', 0)
asyncPlotter1 = AsyncPlotter(nc)
asyncPlotter1.saveLinePlotVec3("test 1")
asyncPlotter2 = AsyncPlotter(nc)
asyncPlotter2.saveLinePlotVec3("test 2")
asyncPlotter1.join()
asyncPlotter2.join()
Run Code Online (Sandbox Code Playgroud)
总而言之,您可能想要重组代码并使用进程池。它已经处理了并行执行AsyncPlotter的情况cpu_count:
from multiprocessing import Pool, set_start_method
from random import random
import time
def linePlotVec3(test):
time.sleep(random())
print("test", test)
if __name__ == "__main__":
set_start_method("spawn")
with Pool() as pool:
pool.map(linePlotVec3, range(20))
Run Code Online (Sandbox Code Playgroud)
或者您可以使用 aProcessPoolExecutor来做几乎相同的事情。此示例一次启动一个任务,而不是映射到列表:
from concurrent.futures import ProcessPoolExecutor
import multiprocessing as mp
import time
from random import random
def work(i):
r = random()
print("work", i, r)
time.sleep(r)
def main():
ctx = mp.get_context("spawn")
with ProcessPoolExecutor(mp_context=ctx) as pool:
for i in range(20):
pool.submit(work, i)
if __name__ == "__main__":
main()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10154 次 |
| 最近记录: |