niu*_*uer 5 apache-spark-sql pyspark
对于 pyspark 中的 DataFrame,如果使用 F.lit(1) (或任何其他值)初始化列,则它会被分配给 pandas_udf 内的某些值(在本例中使用 shift(),但也可能发生在任何其他函数上) ),这会导致“索引处的值为空”错误。
谁能提供一些提示为什么会发生这种情况?这是 pyspark 中的错误吗?
请参阅下面的代码和错误。
spark = SparkSession.builder.appName('test').getOrCreate()
df = spark.createDataFrame([Row(id=1, name='a', c=3),
Row(id=2, name='b', c=6),
Row(id=3, name='a', c=2),
Row(id=4, name='b', c=9),
Row(id=5, name='c', c=7)])
df = df.withColumn('f', F.lit(1))
@pandas_udf(df.schema, PandasUDFType.GROUPED_MAP)
def shift_test(pdf):
pdf['f'] = pdf['c'].shift(1)
return pdf
df = df.groupby(['name']).apply(shift_test)
df.show()
Run Code Online (Sandbox Code Playgroud)
f如果我将列设置为等于c
请参阅下面的输出,则不会出现此类错误。
+---+---+----+---+
| c| id|name| f|
+---+---+----+---+
| 3| 1| a| 1|
| 6| 2| b| 1|
| 2| 3| a| 1|
| 9| 4| b| 1|
| 7| 5| c| 1|
+---+---+----+---+
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-46-5b4a8c6e0258> in <module>
18
19 df = df.groupby(['name']).apply(shift_test)
---> 20 df.show()
Py4JJavaError: An error occurred while calling o3378.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 97 in stage 426.0 failed 4 times, most recent failure: Lost task 97.3 in stage 426.0 (TID 6258, optoldevny1, executor 0): java.lang.IllegalStateException: Value at index is null
at org.apache.arrow.vector.IntVector.get(IntVector.java:101)
at org.apache.spark.sql.vectorized.ArrowColumnVector$IntAccessor.getInt(ArrowColumnVector.java:299)
at org.apache.spark.sql.vectorized.ArrowColumnVector.getInt(ArrowColumnVector.java:84)
at org.apache.spark.sql.execution.vectorized.MutableColumnarRow.getInt(MutableColumnarRow.java:117)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1879)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3389)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2550)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2764)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
at sun.reflect.GeneratedMethodAccessor67.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.IllegalStateException: Value at index is null
at org.apache.arrow.vector.IntVector.get(IntVector.java:101)
at org.apache.spark.sql.vectorized.ArrowColumnVector$IntAccessor.getInt(ArrowColumnVector.java:299)
at org.apache.spark.sql.vectorized.ArrowColumnVector.getInt(ArrowColumnVector.java:84)
at org.apache.spark.sql.execution.vectorized.MutableColumnarRow.getInt(MutableColumnarRow.java:117)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Run Code Online (Sandbox Code Playgroud)
您收到错误的原因是由于函数null引入的值shift,其次是因为您没有对返回的架构进行任何更改以接受这些null值。
当您将返回模式指定为 时,spark 默认情况下会从原始模式中df.schema获取。nullable = False因此,您需要在此处为 column 提供一个新架构f,您需要在其中进行设置nullable = True以避免此错误。
# Schema of output DataFrame
new_schema = StructType([
StructField("c", IntegerType(), False),
StructField("id", IntegerType(), False),
StructField("name", StringType(), False),
StructField("f", IntegerType(), True)
])
@pandas_udf(new_schema, PandasUDFType.GROUPED_MAP)
def shift_test(pdf):
pdf['f'] = pdf['c'].shift(1)
return pdf
Run Code Online (Sandbox Code Playgroud)
看起来 pyspark 当来自 pandas_udf 时无法处理缺失值。在进入 pandas_udf 之前,它期望每列具有某种数据类型(如
@pandas_udf(df.schema, PandasUDFType.GROUPED_MAP).
如果存在任何缺失值(可以在shift此处生成),则会抛出异常,因为 Java 无法处理缺失值(例外是 Java 例外:)java.lang.IllegalStateException。
要解决此问题,需要将此类缺失值替换为正确类型的值,此处为integer.
这个新pandas_udf功能解决了这个问题:
@pandas_udf(df.schema, PandasUDFType.GROUPED_MAP)
def shift_test(pdf):
pdf['f'] = pdf['c'].shift(1)
pdf['f'].fillna(value=-1, inplace=True) #replace missing values with -1
return pdf
Run Code Online (Sandbox Code Playgroud)
这是输出
+---+---+----+---+
| c| id|name| f|
+---+---+----+---+
| 7| 5| c| -1|
| 6| 2| b| -1|
| 9| 4| b| 6|
| 2| 3| a| -1|
| 3| 1| a| 2|
+---+---+----+---+
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3272 次 |
| 最近记录: |