mjl*_*wky 3 scala apache-spark rdd
I have a Spark Scala program which uses a REST API to get data batch by batch, and once all the data is retrieved I operate on them.
Current Program:
For each batch, create RDD and merge it with the previous RDD
created using the previous API call rdd.union(currentRdd).
Operate on final RDD
A simple program to reproduce the issue:
def main(args: Array[String]) = {
val conf = new SparkConf().setAppName("Union test").setMaster("local[1]")
val sc = new SparkContext(conf)
val limit = 1000;
var rdd = sc.emptyRDD[Int]
for (x <- 1 to limit) {
val currentRdd = sc.parallelize(x to x + 3)
rdd = rdd.union(currentRdd)
}
println(rdd.sum())
}
Run Code Online (Sandbox Code Playgroud)
Problem:
- When number of batches are high the program throws a StackOverflowError : Exception in thread "main" java.lang.StackOverflowError
at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply
I assume, that when the number of batches increases the RDD dependency graph becomes really complex and throwing the error.
What is the best way to resolve this problem?
已经SparkContext.union知道如何正确计算a union的倍数RDD:
val rdds = List.tabulate(limit + 1)(x => sc.parallelize(x to x + 3))
val rdd = sc.union(rdds)
Run Code Online (Sandbox Code Playgroud)
另外,您可以尝试使用此辅助函数来避免创建unions 的长链:
val rdds = List.tabulate(limit + 1)(x => sc.parallelize(x to x + 3))
val rdd = balancedReduce(rdds)(_ union _)
Run Code Online (Sandbox Code Playgroud)
它应该工作的原因与链接的答案基本相同:s的O(n)链会union破坏堆栈,O(log(n))而union-s的高二叉树则不会。
| 归档时间: |
|
| 查看次数: |
58 次 |
| 最近记录: |