我使用的是 airflow 1.10.2,但 Airflow 似乎忽略了我为 DAG 设置的超时。
我正在使用dagrun_timeout参数(例如 20 秒)为 DAG 设置超时期限,并且我有一个需要 2 分钟才能运行的任务,但气流将 DAG 标记为成功!
args = {
'owner': 'me',
'start_date': airflow.utils.dates.days_ago(2),
'provide_context': True
}
dag = DAG('test_timeout',
schedule_interval=None,
default_args=args,
dagrun_timeout=timedelta(seconds=20))
def this_passes(**kwargs):
return
def this_passes_with_delay(**kwargs):
time.sleep(120)
return
would_succeed = PythonOperator(task_id='would_succeed',
dag=dag,
python_callable=this_passes,
email=to)
would_succeed_with_delay = PythonOperator(task_id='would_succeed_with_delay',
dag=dag,
python_callable=this_passes_with_delay,
email=to)
would_succeed >> would_succeed_with_delay
Run Code Online (Sandbox Code Playgroud)
不会抛出任何错误消息。我是否使用了错误的参数?
Luc*_*cas 23
如源代码所述:
:param dagrun_timeout: specify how long a DagRun should be up before
timing out / failing, so that new DagRuns can be created. The timeout
is only enforced for scheduled DagRuns, and only once the
# of active DagRuns == max_active_runs.
Run Code Online (Sandbox Code Playgroud)
所以这可能是您设置时的预期行为schedule_interval=None
。在这里,这个想法是为了确保预定的 DAG 不会永远持续下去并阻止后续的运行实例。
现在,您可能对execution_timeout
所有运营商中的可用内容感兴趣。例如,您可以PythonOperator
像这样设置 60 秒超时:
:param dagrun_timeout: specify how long a DagRun should be up before
timing out / failing, so that new DagRuns can be created. The timeout
is only enforced for scheduled DagRuns, and only once the
# of active DagRuns == max_active_runs.
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
12313 次 |
最近记录: |