Fal*_*kra 5 python hive pyspark pyspark-sql
I want to count the occurrences of list of substrings and create a column based on a column in the pyspark df which contains a long string.
Input:
ID History
1 USA|UK|IND|DEN|MAL|SWE|AUS
2 USA|UK|PAK|NOR
3 NOR|NZE
4 IND|PAK|NOR
lst=['USA','IND','DEN']
Output :
ID History Count
1 USA|UK|IND|DEN|MAL|SWE|AUS 3
2 USA|UK|PAK|NOR 1
3 NOR|NZE 0
4 IND|PAK|NOR 1
Run Code Online (Sandbox Code Playgroud)
# Importing requisite packages and creating a DataFrame
from pyspark.sql.functions import split, col, size, regexp_replace
values = [(1,'USA|UK|IND|DEN|MAL|SWE|AUS'),(2,'USA|UK|PAK|NOR'),(3,'NOR|NZE'),(4,'IND|PAK|NOR')]
df = sqlContext.createDataFrame(values,['ID','History'])
df.show(truncate=False)
+---+--------------------------+
|ID |History |
+---+--------------------------+
|1 |USA|UK|IND|DEN|MAL|SWE|AUS|
|2 |USA|UK|PAK|NOR |
|3 |NOR|NZE |
|4 |IND|PAK|NOR |
+---+--------------------------+
Run Code Online (Sandbox Code Playgroud)
这个想法是根据这三个delimiters:来分割字符串lst=['USA','IND','DEN'],然后计算生成的子字符串的数量。
例如;字符串USA|UK|IND|DEN|MAL|SWE|AUS被分割为 - ,, |UK|, |, |MAL|SWE|AUS。由于创建了 4 个子字符串并且有 3 个分隔符匹配,因此4-1 = 3给出了出现在列字符串中的这些字符串的计数。
我不确定 Spark 中是否支持多字符分隔符,因此第一步,我们将列表中的这 3 个子字符串中的任何一个替换['USA','IND','DEN']为 flag/dummy value %。您也可以使用其他东西。以下代码执行此操作replacement-
df = df.withColumn('History_X',col('History'))
lst=['USA','IND','DEN']
for i in lst:
df = df.withColumn('History_X', regexp_replace(col('History_X'), i, '%'))
df.show(truncate=False)
+---+--------------------------+--------------------+
|ID |History |History_X |
+---+--------------------------+--------------------+
|1 |USA|UK|IND|DEN|MAL|SWE|AUS|%|UK|%|%|MAL|SWE|AUS|
|2 |USA|UK|PAK|NOR |%|UK|PAK|NOR |
|3 |NOR|NZE |NOR|NZE |
|4 |IND|PAK|NOR |%|PAK|NOR |
+---+--------------------------+--------------------+
Run Code Online (Sandbox Code Playgroud)
splitting最后,我们先计算它作为分隔符创建的子字符串的数量%,然后计算使用 function 创建的子字符串的数量size,最后减去 1。
df = df.withColumn('Count', size(split(col('History_X'), "%")) - 1).drop('History_X')
df.show(truncate=False)
+---+--------------------------+-----+
|ID |History |Count|
+---+--------------------------+-----+
|1 |USA|UK|IND|DEN|MAL|SWE|AUS|3 |
|2 |USA|UK|PAK|NOR |1 |
|3 |NOR|NZE |0 |
|4 |IND|PAK|NOR |1 |
+---+--------------------------+-----+
Run Code Online (Sandbox Code Playgroud)
如果您使用Spark 2.4+,您可以尝试 SPARK SQL 高阶函数filter():
from pyspark.sql import functions as F
>>> df.show(5,0)
+---+--------------------------+
|ID |History |
+---+--------------------------+
|1 |USA|UK|IND|DEN|MAL|SWE|AUS|
|2 |USA|UK|PAK|NOR |
|3 |NOR|NZE |
|4 |IND|PAK|NOR |
+---+--------------------------+
df_new = df.withColumn('data', F.split('History', '\|')) \
.withColumn('cnt', F.expr('size(filter(data, x -> x in ("USA", "IND", "DEN")))'))
>>> df_new.show(5,0)
+---+--------------------------+----------------------------------+---+
|ID |History |data |cnt|
+---+--------------------------+----------------------------------+---+
|1 |USA|UK|IND|DEN|MAL|SWE|AUS|[USA, UK, IND, DEN, MAL, SWE, AUS]|3 |
|2 |USA|UK|PAK|NOR |[USA, UK, PAK, NOR] |1 |
|3 |NOR|NZE |[NOR, NZE] |0 |
|4 |IND|PAK|NOR |[IND, PAK, NOR] |1 |
+---+--------------------------+----------------------------------+---+
Run Code Online (Sandbox Code Playgroud)
我们首先将字段拆分History为名为的数组列data,然后使用过滤器函数:
filter(data, x -> x in ("USA", "IND", "DEN"))
Run Code Online (Sandbox Code Playgroud)
仅检索满足条件的数组元素:IN ("USA", "IND", "DEN"),之后,我们使用size()函数对结果数组进行计数。
更新:添加了另一种使用array_contains()的方法,该方法适用于旧版本 Spark:
lst = ["USA", "IND", "DEN"]
df_new = df.withColumn('data', F.split('History', '\|')) \
.withColumn('Count', sum([F.when(F.array_contains('data',e),1).otherwise(0) for e in lst]))
Run Code Online (Sandbox Code Playgroud)
注意:数组中的重复条目将被跳过,此方法仅计算唯一的国家/地区代码。