Han*_*yen 13 python machine-learning data-science lightgbm
我尝试了两种实现轻型 GBM 的方法。期望它返回相同的值,但它没有。
我想lgb.LightGBMRegressor()和lgb.train(train_data, test_data)将返回相同的精度,但它没有。所以我想知道为什么?
def dataready(train, test, predictvar):
included_features = train.columns
y_test = test[predictvar].values
y_train = train[predictvar].ravel()
train = train.drop([predictvar], axis = 1)
test = test.drop([predictvar], axis = 1)
x_train = train.values
x_test = test.values
return x_train, y_train, x_test, y_test, train
Run Code Online (Sandbox Code Playgroud)
x_train, y_train, x_test, y_test, train2 = dataready(train, test, 'runtime.min')
train_data = lgb.Dataset(x_train, label=y_train)
test_data = lgb.Dataset(x_test, label=y_test)
Run Code Online (Sandbox Code Playgroud)
lgb1 = LMGBRegressor()
lgb1.fit(x_train, y_train)
lgb = lgb.train(parameters,train_data,valid_sets=test_data,num_boost_round=5000,early_stopping_rounds=100)
Run Code Online (Sandbox Code Playgroud)
我希望它大致相同,但事实并非如此。据我了解,一个是助推器,另一个是回归器?