mig*_*rin 5 python opencv image-processing brightness computer-vision
我想在OpenCV中将图像的亮度调整为某个值。例如,考虑以下图像:
我用以下方法计算亮度:
import cv2
img = cv2.imread(filepath)
cols, rows = img.shape
brightness = numpy.sum(img) / (255 * cols * rows)
Run Code Online (Sandbox Code Playgroud)
我得到的平均亮度为35%。例如,将其提高到66%,我这样做:
minimum_brightness = 0.66
alpha = brightness / minimum_brightness
bright_img = cv2.convertScaleAbs(img, alpha = alpha, beta = 255 * (1 - alpha))
Run Code Online (Sandbox Code Playgroud)
我得到的图像似乎具有50%的透明面纱:
我可以通过仅使用偏差来避免这种影响:
bright_img = cv2.convertScaleAbs(img, alpha = 1, beta = 128)
Run Code Online (Sandbox Code Playgroud)
而且图像似乎也带有面纱:
如果我手动进行此操作,例如在Photoshop中将亮度调整为150,则结果似乎还不错:
但是,这不是自动的,不会提供目标亮度。
我可以通过伽玛校正和/或直方图均衡来实现,以获得更自然的结果,但是除了反复试验外,我看不到获得目标亮度的简便方法。
有没有人成功将亮度自动调整为目标?
卡纳特建议:
bright_img = cv2.convertScaleAbs(img, alpha = 1, beta = 255 * (minimum_brightness - brightness))
Run Code Online (Sandbox Code Playgroud)
结果更好,但仍然有面纱:
Yves Daoust建议保持beta = 0,因此我进行了调整alpha = minimum_brightness / brightness以获得目标亮度:
ratio = brightness / minimum_brightness
if ratio >= 1:
print("Image already bright enough")
return img
# Otherwise, adjust brightness to get the target brightness
return cv2.convertScaleAbs(img, alpha = 1 / ratio, beta = 0)
Run Code Online (Sandbox Code Playgroud)
结果很好:
您可以尝试使用带有直方图剪裁的对比度优化来自动调整亮度。您可以通过增加直方图剪辑百分比 ( clip_hist_percent)来增加目标亮度。这是 25% 剪裁的结果
Alpha 和 Beta 是自动计算的
阿尔法 3.072289156626506
测试版 -144.3975903614458

这是剪辑的可视化。蓝色(原始)、橙色(自动调整后)。
裁剪率为 35% 的结果

阿尔法 3.8059701492537314
测试版 -201.71641791044777
其他方法可以使用Histogram Equalization 或 CLAHE。
import cv2
import numpy as np
# from matplotlib import pyplot as plt
# Automatic brightness and contrast optimization with optional histogram clipping
def automatic_brightness_and_contrast(image, clip_hist_percent=25):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Calculate grayscale histogram
hist = cv2.calcHist([gray],[0],None,[256],[0,256])
hist_size = len(hist)
# Calculate cumulative distribution from the histogram
accumulator = []
accumulator.append(float(hist[0]))
for index in range(1, hist_size):
accumulator.append(accumulator[index -1] + float(hist[index]))
# Locate points to clip
maximum = accumulator[-1]
clip_hist_percent *= (maximum/100.0)
clip_hist_percent /= 2.0
# Locate left cut
minimum_gray = 0
while accumulator[minimum_gray] < clip_hist_percent:
minimum_gray += 1
# Locate right cut
maximum_gray = hist_size -1
while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
maximum_gray -= 1
# Calculate alpha and beta values
alpha = 255 / (maximum_gray - minimum_gray)
beta = -minimum_gray * alpha
'''
# Calculate new histogram with desired range and show histogram
new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
plt.plot(hist)
plt.plot(new_hist)
plt.xlim([0,256])
plt.show()
'''
auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
return (auto_result, alpha, beta)
image = cv2.imread('1.png')
auto_result, alpha, beta = automatic_brightness_and_contrast(image)
print('alpha', alpha)
print('beta', beta)
cv2.imshow('auto_result', auto_result)
cv2.imwrite('auto_result.png', auto_result)
cv2.imshow('image', image)
cv2.waitKey()
Run Code Online (Sandbox Code Playgroud)
另一种版本是使用饱和度算法而不是使用 OpenCV 的cv2.convertScaleAbs. 内置方法不采用绝对值,这会导致无意义的结果(例如,在 alpha = 3 和 beta = -210 的情况下,44 处的像素在 OpenCV 中变为 78,而实际上它应该变为 0)。
import cv2
import numpy as np
# from matplotlib import pyplot as plt
def convertScale(img, alpha, beta):
"""Add bias and gain to an image with saturation arithmetics. Unlike
cv2.convertScaleAbs, it does not take an absolute value, which would lead to
nonsensical results (e.g., a pixel at 44 with alpha = 3 and beta = -210
becomes 78 with OpenCV, when in fact it should become 0).
"""
new_img = img * alpha + beta
new_img[new_img < 0] = 0
new_img[new_img > 255] = 255
return new_img.astype(np.uint8)
# Automatic brightness and contrast optimization with optional histogram clipping
def automatic_brightness_and_contrast(image, clip_hist_percent=25):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Calculate grayscale histogram
hist = cv2.calcHist([gray],[0],None,[256],[0,256])
hist_size = len(hist)
# Calculate cumulative distribution from the histogram
accumulator = []
accumulator.append(float(hist[0]))
for index in range(1, hist_size):
accumulator.append(accumulator[index -1] + float(hist[index]))
# Locate points to clip
maximum = accumulator[-1]
clip_hist_percent *= (maximum/100.0)
clip_hist_percent /= 2.0
# Locate left cut
minimum_gray = 0
while accumulator[minimum_gray] < clip_hist_percent:
minimum_gray += 1
# Locate right cut
maximum_gray = hist_size -1
while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
maximum_gray -= 1
# Calculate alpha and beta values
alpha = 255 / (maximum_gray - minimum_gray)
beta = -minimum_gray * alpha
'''
# Calculate new histogram with desired range and show histogram
new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
plt.plot(hist)
plt.plot(new_hist)
plt.xlim([0,256])
plt.show()
'''
auto_result = convertScale(image, alpha=alpha, beta=beta)
return (auto_result, alpha, beta)
image = cv2.imread('1.jpg')
auto_result, alpha, beta = automatic_brightness_and_contrast(image)
print('alpha', alpha)
print('beta', beta)
cv2.imshow('auto_result', auto_result)
cv2.imwrite('auto_result.png', auto_result)
cv2.imshow('image', image)
cv2.waitKey()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1013 次 |
| 最近记录: |