Dog*_*Dog 8 c++ signal-processing fftw
我正在尝试计算FFT然后IFFT只是试试我是否可以得到相同的信号,但我不确定如何实现它.我就是这样做的FFT:
plan = fftw_plan_r2r_1d(blockSize, datas, out, FFTW_R2HC, FFTW_ESTIMATE);
fftw_execute(plan);
Run Code Online (Sandbox Code Playgroud)
hbp*_*hbp 18
这是一个例子.它做了两件事.首先,它准备一个输入数组in[N]作为余弦波,其频率为3,幅度为1.0,傅里叶变换它.所以,在输出中,你应该看到一个峰值out[3]和另一个峰值out[N-3].由于余弦波的幅度为1.0,因此得到N/2 out[3]和out[N-3].
其次,逆傅立叶将数组转换out[N]回in2[N].经过适当的规范化后,您可以看到它in2[N]与之相同in[N].
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
#define N 16
int main(void) {
fftw_complex in[N], out[N], in2[N]; /* double [2] */
fftw_plan p, q;
int i;
/* prepare a cosine wave */
for (i = 0; i < N; i++) {
in[i][0] = cos(3 * 2*M_PI*i/N);
in[i][1] = 0;
}
/* forward Fourier transform, save the result in 'out' */
p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(p);
for (i = 0; i < N; i++)
printf("freq: %3d %+9.5f %+9.5f I\n", i, out[i][0], out[i][1]);
fftw_destroy_plan(p);
/* backward Fourier transform, save the result in 'in2' */
printf("\nInverse transform:\n");
q = fftw_plan_dft_1d(N, out, in2, FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(q);
/* normalize */
for (i = 0; i < N; i++) {
in2[i][0] *= 1./N;
in2[i][1] *= 1./N;
}
for (i = 0; i < N; i++)
printf("recover: %3d %+9.5f %+9.5f I vs. %+9.5f %+9.5f I\n",
i, in[i][0], in[i][1], in2[i][0], in2[i][1]);
fftw_destroy_plan(q);
fftw_cleanup();
return 0;
}
Run Code Online (Sandbox Code Playgroud)
这是输出:
freq: 0 -0.00000 +0.00000 I
freq: 1 +0.00000 +0.00000 I
freq: 2 -0.00000 +0.00000 I
freq: 3 +8.00000 -0.00000 I
freq: 4 +0.00000 +0.00000 I
freq: 5 -0.00000 +0.00000 I
freq: 6 +0.00000 -0.00000 I
freq: 7 -0.00000 +0.00000 I
freq: 8 +0.00000 +0.00000 I
freq: 9 -0.00000 -0.00000 I
freq: 10 +0.00000 +0.00000 I
freq: 11 -0.00000 -0.00000 I
freq: 12 +0.00000 -0.00000 I
freq: 13 +8.00000 +0.00000 I
freq: 14 -0.00000 -0.00000 I
freq: 15 +0.00000 -0.00000 I
Inverse transform:
recover: 0 +1.00000 +0.00000 I vs. +1.00000 +0.00000 I
recover: 1 +0.38268 +0.00000 I vs. +0.38268 +0.00000 I
recover: 2 -0.70711 +0.00000 I vs. -0.70711 +0.00000 I
recover: 3 -0.92388 +0.00000 I vs. -0.92388 +0.00000 I
recover: 4 -0.00000 +0.00000 I vs. -0.00000 +0.00000 I
recover: 5 +0.92388 +0.00000 I vs. +0.92388 +0.00000 I
recover: 6 +0.70711 +0.00000 I vs. +0.70711 +0.00000 I
recover: 7 -0.38268 +0.00000 I vs. -0.38268 +0.00000 I
recover: 8 -1.00000 +0.00000 I vs. -1.00000 +0.00000 I
recover: 9 -0.38268 +0.00000 I vs. -0.38268 +0.00000 I
recover: 10 +0.70711 +0.00000 I vs. +0.70711 +0.00000 I
recover: 11 +0.92388 +0.00000 I vs. +0.92388 +0.00000 I
recover: 12 +0.00000 +0.00000 I vs. +0.00000 +0.00000 I
recover: 13 -0.92388 +0.00000 I vs. -0.92388 +0.00000 I
recover: 14 -0.70711 +0.00000 I vs. -0.70711 +0.00000 I
recover: 15 +0.38268 +0.00000 I vs. +0.38268 +0.00000 I
Run Code Online (Sandbox Code Playgroud)
您是否至少尝试过阅读更体面的文档?
他们为你准备了一个完整的教程来帮助你了解 FFTW:
http://fftw.org/fftw3_doc/Tutorial.html#Tutorial
更新:我假设您知道如何使用 C 数组,因为这就是用作输入和输出的内容。
此页面包含 FFT 与 IFFT 所需的信息(请参阅参数 -> 符号)。文档还说输入->FFT->IFFT->n*输入。因此,您必须小心正确地缩放数据。