mar*_*uan 5 python keras tensorflow
我正在使用tf.kerasTensorFlow 1.14.0。我已经实现了一个计算量非常大的自定义指标,如果我只是将它添加到作为model.compile(..., metrics=[...]).
如何让 Keras 在训练迭代期间跳过度量的计算,但在每个时期结束时根据验证数据(并打印)计算它?
小智 8
为此,您可以在指标计算中创建一个 tf.Variable,用于确定计算是否继续,然后在使用回调运行测试时更新它。例如
class MyCustomMetric(tf.keras.metrics.Metrics):
def __init__(self, **kwargs):
# Initialise as normal and add flag variable for when to run computation
super(MyCustomMetric, self).__init__(**kwargs)
self.metric_variable = self.add_weight(name='metric_variable', initializer='zeros')
self.on = tf.Variable(False)
def update_state(self, y_true, y_pred, sample_weight=None):
# Use conditional to determine if computation is done
if self.on:
# run computation
self.metric_variable.assign_add(computation_result)
def result(self):
return self.metric_variable
def reset_states(self):
self.metric_variable.assign(0.)
class ToggleMetrics(tf.keras.callbacks.Callback):
'''On test begin (i.e. when evaluate() is called or
validation data is run during fit()) toggle metric flag '''
def on_test_begin(self, logs):
for metric in self.model.metrics:
if 'MyCustomMetric' in metric.name:
metric.on.assign(True)
def on_test_end(self, logs):
for metric in self.model.metrics:
if 'MyCustomMetric' in metric.name:
metric.on.assign(False)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1078 次 |
| 最近记录: |