tal*_*a06 8 python deep-learning torch pytorch torchvision
我得到的错误TypeError: pic should be PIL Image or ndarray. Got <class 'numpy.ndarray'>,当我尝试加载非图像数据集通过DataLoader。的版本torch和torchvision是1.0.1,和0.2.2.post3分别。Python 的版本3.7.1在Windows 10机器上。
这是代码:
class AndroDataset(Dataset):
def __init__(self, csv_path):
self.transform = transforms.Compose([transforms.ToTensor()])
csv_data = pd.read_csv(csv_path)
self.csv_path = csv_path
self.features = []
self.classes = []
self.features.append(csv_data.iloc[:, :-1].values)
self.classes.append(csv_data.iloc[:, -1].values)
def __getitem__(self, index):
# the error occurs here
return self.transform(self.features[index]), self.transform(self.classes[index])
def __len__(self):
return len(self.features)
Run Code Online (Sandbox Code Playgroud)
我设置了加载器:
training_data = AndroDataset('android.csv')
train_loader = DataLoader(dataset=training_data, batch_size=batch_size, shuffle=True)
Run Code Online (Sandbox Code Playgroud)
这是完整的错误堆栈跟踪:
Traceback (most recent call last):
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\pydevd.py", line 1758, in <module>
main()
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\pydevd.py", line 1752, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\pydevd.py", line 1147, in run
pydev_imports.execfile(file, globals, locals) # execute the script
File "C:\Program Files\JetBrains\PyCharm 2018.1.2\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "C:/Users/talha/Documents/PyCharmProjects/DeepAndroid/deep_test_conv1d.py", line 231, in <module>
main()
File "C:/Users/talha/Documents/PyCharmProjects/DeepAndroid/deep_test_conv1d.py", line 149, in main
for i, (images, labels) in enumerate(train_loader):
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torch\utils\data\dataloader.py", line 615, in __next__
batch = self.collate_fn([self.dataset[i] for i in indices])
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torch\utils\data\dataloader.py", line 615, in <listcomp>
batch = self.collate_fn([self.dataset[i] for i in indices])
File "C:/Users/talha/Documents/PyCharmProjects/DeepAndroid/deep_test_conv1d.py", line 102, in __getitem__
return self.transform(self.features[index]), self.transform(self.classes[index])
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torchvision\transforms\transforms.py", line 60, in __call__
img = t(img)
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torchvision\transforms\transforms.py", line 91, in __call__
return F.to_tensor(pic)
File "C:\Users\talha\Documents\PyCharmProjects\DeepAndroid\venv\lib\site-packages\torchvision\transforms\functional.py", line 50, in to_tensor
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
TypeError: pic should be PIL Image or ndarray. Got <class 'numpy.ndarray'>
Run Code Online (Sandbox Code Playgroud)
Mir*_*ber 16
发生这种情况是因为您使用了转换:
self.transform = transforms.Compose([transforms.ToTensor()])
Run Code Online (Sandbox Code Playgroud)
正如您在文档中看到的,torchvision.transforms.ToTensor将 PIL 图像转换numpy.ndarray为张量。因此,如果您想使用此转换,您的数据必须属于上述类型之一。
小智 14
tf=transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((512,640)),
transforms.ToTensor()
])
Run Code Online (Sandbox Code Playgroud)
这个对我有用。
Vis*_*asu 11
扩展@MiriamFarber的答案,你不能在对象transforms.ToTensor()上使用numpy.ndarray。您可以使用将numpy数组转换为张量,然后将张量转换为所需的数据类型。torchtorch.from_numpy()
例如:
>>> import numpy as np
>>> import torch
>>> np_arr = np.ones((5289, 38))
>>> torch_tensor = torch.from_numpy(np_arr).long()
>>> type(np_arr)
<class 'numpy.ndarray'>
>>> type(torch_tensor)
<class 'torch.Tensor'>
Run Code Online (Sandbox Code Playgroud)
小智 10
如果要在数组上使用torchvision.transformsnumpy,请首先使用以下命令将 numpy 数组转换为 PIL Image 对象transforms.ToPILImage()
| 归档时间: |
|
| 查看次数: |
20897 次 |
| 最近记录: |