如何修复RuntimeError“标量类型为Float的预期对象,但参数为标量类型Double”?

Sha*_*ang 4 python classification neural-network deep-learning pytorch

我正在尝试通过PyTorch训练分类器。但是,当我向模型提供训练数据时,我遇到了训练问题。我收到此错误y_pred = model(X_trainTensor)

RuntimeError:标量类型为Float的预期对象,但参数#4'mat1'的标量类型为Double

这是我的代码的关键部分:

# Hyper-parameters 
D_in = 47  # there are 47 parameters I investigate
H = 33
D_out = 2  # output should be either 1 or 0
Run Code Online (Sandbox Code Playgroud)
# Format and load the data
y = np.array( df['target'] )
X = np.array( df.drop(columns = ['target'], axis = 1) )
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.8)  # split training/test data

X_trainTensor = torch.from_numpy(X_train) # convert to tensors
y_trainTensor = torch.from_numpy(y_train)
X_testTensor = torch.from_numpy(X_test)
y_testTensor = torch.from_numpy(y_test)
Run Code Online (Sandbox Code Playgroud)
# Define the model
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
    nn.LogSoftmax(dim = 1)
)
Run Code Online (Sandbox Code Playgroud)
# Define the loss function
loss_fn = torch.nn.NLLLoss() 
Run Code Online (Sandbox Code Playgroud)
for i in range(50):
    y_pred = model(X_trainTensor)
    loss = loss_fn(y_pred, y_trainTensor)
    model.zero_grad()
    loss.backward()
    with torch.no_grad():       
        for param in model.parameters():
            param -= learning_rate * param.grad
Run Code Online (Sandbox Code Playgroud)

Shu*_*hra 28

我有同样的问题

解决

在转换为张量之前,试试这个

X_train = X_train.astype(np.float32)
Run Code Online (Sandbox Code Playgroud)


Mil*_*y90 11

参考来自这个github问题

当错误出现时RuntimeError: Expected object of scalar type Float but got scalar type Double for argument #4 'mat1',您将需要使用该.float()函数,因为它说的是Expected object of scalar type Float

因此,解决方案更改y_pred = model(X_trainTensor)y_pred = model(X_trainTensor.float())

同样,当您针对遇到另一个错误时loss = loss_fn(y_pred, y_trainTensor),您也需y_trainTensor.long()要这样做,因为错误消息中显示Expected object of scalar type Long

您也可以model.double()按照@Paddy的建议进行操作。


Roh*_*vas 8

可以通过将输入的数据类型设置为 Double 来解决该问题torch.float32

我希望问题出现是因为您的数据类型是torch.float64.

您可以在设置数据时避免这种情况,如其他答案之一所述,或者使模型类型也与您的数据相同。即使用 float64 或 float32。

对于调试,打印 obj.dtype 并检查一致性。