从R中的CSV文件中读取`...`中定义的函数输入值

rno*_*ian 3 loops r function lapply dataframe

假设我有一个foo如下的R函数。该函数有4个固定参数,并且在中定义了任意数量的任意参数...

foo参数的所有输入值都存储在 CSV文件中。

在下面的代码中,我可以foolapply循环中成功使用从CSV文件导入的4个固定参数来运行。我不知道我怎么可以插入定义的参数...lapply命令?

foo <- function(n = NULL, r = NULL, post, control, ...){ ## the function

data.frame(n = n, r = r, post, control, ...)

}

D <- read.csv("https://raw.githubusercontent.com/izeh/i/master/j.csv", h = T) # CSV file
L <- split(D, D$study.name) ; L[[1]] <- NULL

# the fixed args values:
      n <- lapply(1:length(L), function(i) L[[i]]$n)
      r <- lapply(1:length(L), function(i) L[[i]]$r)
   post <- lapply(1:length(L), function(i) L[[i]]$post)
control <- lapply(1:length(L), function(i) L[[i]]$control)

# names of args defined in `...`:
dot.names <- names(L[[1]])[!names(L[[1]]) %in% formalArgs(foo)][-1]

# the `...` args values:
a <- lapply(dot.names, function(i) lapply(L, function(j) j[grep(i, names(j))]))

## RUN `foo` function:
lapply(1:length(L), function(i) foo(n = n[[i]], r = r[[i]], post = post[[i]], 
                                     control = control[[i]])) # BUT! how can I insert the 
                                                              # arguments defined in `...` 
                                                              # in the function?
Run Code Online (Sandbox Code Playgroud)

akr*_*run 5

我们也可以用Mapdo.call。我们可以foo在一次调用中lapply通过...基于'dot.names'的输出提取列'n','r','post',control'和多余的列()来提取参数,然后transpose(从purrr-或使用此处提到的相同方法)并继续Map

args <- lapply(L, function(x) unclass(x[c("n", "r", "post", "control", dot.names)]))
library(purrr)
unname(do.call(Map, c(f = foo, transpose(args))))
#[[1]]
#   n   r post control ESL prof scope type
#1 13 0.5    1   FALSE   1    2     0    1
#2 13 0.5    2   FALSE   1    2     0    1
#3 15 0.5    1   FALSE   1    2     0    1
#4 15 0.5    2   FALSE   1    2     0    1
#5 16 0.5    1    TRUE   1    2     0    1
#6 16 0.5    2    TRUE   1    2     0    1

#[[2]]
#   n   r post control ESL prof scope type
#1 13 0.5    1   FALSE   0    1     1    0
#2 13 0.5    2   FALSE   0    1     1    0
#3 15 0.5    1   FALSE   0    1     1    0
#4 15 0.5    2   FALSE   0    1     1    0
#5 16 0.5    1    TRUE   0    1     1    0
#6 16 0.5    2    TRUE   0    1     1    0

#[[3]]
#   n   r post control ESL prof scope type
#1 13 0.5    1   FALSE   1    3     0    1
#2 13 0.5    2   FALSE   1    3     0    1
#3 13 0.5    3   FALSE   1    3     0    1
#4 15 0.5    1   FALSE   1    3     0    1
#5 15 0.5    2   FALSE   1    3     0    1
#6 15 0.5    3   FALSE   1    3     0    1
#7 16 0.5    1    TRUE   1    3     0    1
#8 16 0.5    2    TRUE   1    3     0    1
#9 16 0.5    3    TRUE   1    3     0    1
Run Code Online (Sandbox Code Playgroud)

该OP提到有关更换transpose一个base R选项

m1 <- simplify2array(lapply(names(args[[1]]), function(nm) 
     lapply(args, function(l1) l1[nm])))
do.call(Map, c(f = foo, unname(split(m1, col(m1)))))
Run Code Online (Sandbox Code Playgroud)

如果可以使用的 tidyverse

library(tidyverse)
map(L, ~ 
       .x %>%
           select(n, r, post, control, dot.names) %>% 
           as.list) %>% 
    transpose %>% 
    pmap(., foo)
#$Ellis.sh1
#   n   r post control ESL prof scope type
#1 13 0.5    1   FALSE   1    2     0    1
#2 13 0.5    2   FALSE   1    2     0    1
#3 15 0.5    1   FALSE   1    2     0    1
#4 15 0.5    2   FALSE   1    2     0    1
#5 16 0.5    1    TRUE   1    2     0    1
#6 16 0.5    2    TRUE   1    2     0    1

#$Goey1
#   n   r post control ESL prof scope type
#1 13 0.5    1   FALSE   0    1     1    0
#2 13 0.5    2   FALSE   0    1     1    0
#3 15 0.5    1   FALSE   0    1     1    0
#4 15 0.5    2   FALSE   0    1     1    0
#5 16 0.5    1    TRUE   0    1     1    0
#6 16 0.5    2    TRUE   0    1     1    0

#$kabla
#   n   r post control ESL prof scope type
#1 13 0.5    1   FALSE   1    3     0    1
#2 13 0.5    2   FALSE   1    3     0    1
#3 13 0.5    3   FALSE   1    3     0    1
#4 15 0.5    1   FALSE   1    3     0    1
#5 15 0.5    2   FALSE   1    3     0    1
#6 15 0.5    3   FALSE   1    3     0    1
#7 16 0.5    1    TRUE   1    3     0    1
#8 16 0.5    2    TRUE   1    3     0    1
#9 16 0.5    3    TRUE   1    3     0    1
Run Code Online (Sandbox Code Playgroud)

更新资料

根据此处显示的示例,结构略有不同,因此我们可以对listwith names(for base R)进行转置。

argsT <- setNames(lapply(names(args[[1]]), 
      function(nm) lapply(args, `[[`, nm)), names(args[[1]]))


out1 <- unname(do.call(Map, c(f = d.prepos, argsT)))
out2 <- unname(do.call(Map, c(f = d.prepos, purrr::transpose(args))))
identical(out1, out2)
#[1] TRUE
Run Code Online (Sandbox Code Playgroud)