在两个时间戳之间左加入R

the*_*ide 2 r dplyr data.table tidyverse

我的目标是进行左连接上intervalsbike_id比赛和created_at时间戳records之间start,并endintervals

> class(records)
[1] "data.table" "data.frame"
> class(intervals)
[1] "data.table" "data.frame"

> records
  bike_id          created_at         resolved_at
1   28780 2019-05-03 08:29:18 2019-05-03 08:35:37
2   28780 2019-05-03 21:05:28 2019-05-03 21:07:28
3   28780 2019-05-04 21:13:39 2019-05-04 21:15:40
4   28780 2019-05-07 17:24:20 2019-05-07 17:26:39
5   28780 2019-05-08 11:34:32 2019-05-08 12:16:44
6   28780 2019-05-08 23:38:39 2019-05-08 23:40:36


> intervals
   bike_id               start                 end id
1:   28780 2019-05-03 04:44:45 2019-05-03 16:58:56  1
2:   28780 2019-05-04 07:07:39 2019-05-04 14:48:29  2
3:   28780 2019-05-07 23:28:32 2019-05-08 12:56:24  3
4:   28780 2019-05-10 06:06:21 2019-05-10 13:12:08  4
5:   28780 2019-05-12 05:21:24 2019-05-12 11:35:52  5
6:   28780 2019-05-13 08:44:54 2019-05-13 12:28:31  6
Run Code Online (Sandbox Code Playgroud)

在这种情况下,输出看起来像

> output
  bike_id          created_at         resolved_at   id
1   28780 2019-05-03 08:29:18 2019-05-03 08:35:37    1
2   28780 2019-05-03 21:05:28 2019-05-03 21:07:28  NULL   
3   28780 2019-05-04 21:13:39 2019-05-04 21:15:40  NULL
4   28780 2019-05-07 17:24:20 2019-05-07 17:26:39  NULL
5   28780 2019-05-08 11:34:32 2019-05-08 12:16:44  NULL
6   28780 2019-05-08 23:38:39 2019-05-08 23:40:36  NULL
Run Code Online (Sandbox Code Playgroud)

我已经使用该解决方案尝试张贴在这里使用tidyverse,但是这会导致R 1至内存用完了(虽然记录的两个表中的金额只有约100K)

fuzzy_left_join(
 records, intervals,
  by = c(
    "bike_id" = "bike_id",
    "created_at" = "start",
    "created_at" = "end"
    ),
  match_fun = list(`==`, `>=`, `<=`)
  ) %>%
  select(id, bike_id = bike_id.x, created_at, start, end)
Run Code Online (Sandbox Code Playgroud)

这会引发错误: Error: vector memory exhausted (limit reached?)

是否存在data.table使用R甚至在R中进行滚动连接的替代方法merge()?通过id联接两个数据帧以及联接表中其他两个之间的时间戳的好方法是什么?

这是数据

dput(intervals)
structure(list(bike_id = c(28780L, 28780L, 28780L, 28780L, 28780L, 
28780L), start = structure(c(1556858685, 1556953659, 1557271712, 
1557468381, 1557638484, 1557737094), class = c("POSIXct", "POSIXt"
), tzone = "UTC"), end = structure(c(1556902736, 1556981309, 
1557320184, 1557493928, 1557660952, 1557750511), class = c("POSIXct", 
"POSIXt"), tzone = "UTC"), id = c(1, 2, 3, 4, 5, 6)), row.names = c(NA, 
-6L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x1030056e0>)

dput(records)
structure(list(bike_id = c(28780L, 28780L, 28780L, 28780L, 28780L, 
28780L), created_at = structure(c(1556872158.796, 1556917528.845, 
1557004419.928, 1557249860.939, 1557315272.396, 1557358719.333
), class = c("POSIXct", "POSIXt"), tzone = "UTC"), resolved_at = structure(c(1556872537.867, 
1556917648.118, 1557004540.056, 1557249999.892, 1557317804.183, 
1557358836.202), class = c("POSIXct", "POSIXt"), tzone = "UTC")), row.names = c(NA, 
6L), class = "data.frame")
Run Code Online (Sandbox Code Playgroud)

akr*_*run 5

我们可以使用data.tablenonequi join

library(data.table)
setDT(records)[intervals, on = .(bike_id, created_at >= start, created_at <= end)]
Run Code Online (Sandbox Code Playgroud)