Vah*_*ili 3 python tensorflow tensorflow-datasets tensorflow-estimator
我正在尝试使用预制的估计器tf.estimator.DNNClassifier
在 MNIST 数据集上使用。我从tensorflow_dataset
.
我遵循以下四个步骤:首先构建数据集管道并定义输入函数:
## Step 1
mnist, info = tfds.load('mnist', with_info=True)
ds_train_orig, ds_test = mnist['train'], mnist['test']
def train_input_fn(dataset, batch_size):
dataset = dataset.map(lambda x:({'image-pixels':tf.reshape(x['image'], (-1,))},
x['label']))
return dataset.shuffle(1000).repeat().batch(batch_size)
Run Code Online (Sandbox Code Playgroud)
然后,在步骤 2 中,我使用单个键和形状 784 定义特征列:
## Step 2:
image_feature_column = tf.feature_column.numeric_column(key='image-pixels',
shape=(28*28))
image_feature_column
NumericColumn(key='image-pixels', shape=(784,), default_value=None, dtype=tf.float32, normalizer_fn=None)
Run Code Online (Sandbox Code Playgroud)
第 3 步,我将估算器实例化如下:
## Step 3:
dnn_classifier = tf.estimator.DNNClassifier(
feature_columns=image_feature_column,
hidden_units=[16, 16],
n_classes=10)
Run Code Online (Sandbox Code Playgroud)
最后,通过调用.train()
方法使用估计器的步骤 4 :
## Step 4:
dnn_classifier.train(
input_fn=lambda:train_input_fn(ds_train_orig, batch_size=32),
#lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size),
steps=20)
Run Code Online (Sandbox Code Playgroud)
但这会导致以下错误。看起来问题出在数据集上。
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-21-95736cd65e45> in <module>
2 dnn_classifier.train(
3 input_fn=lambda: train_input_fn(ds_train_orig, batch_size=32),
----> 4 steps=20)
~/anaconda3/envs/tf2.0-beta/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx, accept_symbolic_tensors, accept_composite_tensors)
1183 graph = get_default_graph()
1184 if not graph.building_function:
-> 1185 raise RuntimeError("Attempting to capture an EagerTensor without "
1186 "building a function.")
1187 return graph.capture(value, name=name)
RuntimeError: Attempting to capture an EagerTensor without building a function.
Run Code Online (Sandbox Code Playgroud)
我认为如果你在input_fn
. 我遵循了 TF2.0 迁移指南示例,这不会出错。请注意,我没有测试模型的正确性,您必须input_fn
稍微修改逻辑才能获得 eval 的函数。
# Define the estimator's input_fn
def input_fn():
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
dataset = mnist_train
dataset = mnist_train.map(lambda x, y:({'image-pixels':tf.reshape(x, (-1,))},
y))
return dataset.shuffle(1000).repeat().batch(32)
image_feature_column = tf.feature_column.numeric_column(key='image-pixels',
shape=(28*28))
dnn_classifier = tf.estimator.DNNClassifier(
feature_columns=[image_feature_column],
hidden_units=[16, 16],
n_classes=10)
dnn_classifier.train(
input_fn=input_fn,
steps=200)
Run Code Online (Sandbox Code Playgroud)
在这一点上,我收到了一堆弃用警告,但似乎估算器已经过培训。