如何访问熊猫数据框中的多级索引?

Pyt*_*ner 5 python multidimensional-array dataframe pandas

我想用相同的索引调用那些行。

所以这是示例数据框,

arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]

df = pd.DataFrame(np.random.randn(8, 4), index=arrays)

In [16]: df
Out[16]: 
                0         1         2         3
bar one -0.424972  0.567020  0.276232 -1.087401
    two -0.673690  0.113648 -1.478427  0.524988
baz one  0.404705  0.577046 -1.715002 -1.039268
    two -0.370647 -1.157892 -1.344312  0.844885
foo one  1.075770 -0.109050  1.643563 -1.469388
    two  0.357021 -0.674600 -1.776904 -0.968914
qux one -1.294524  0.413738  0.276662 -0.472035
    two -0.013960 -0.362543 -0.006154 -0.923061
Run Code Online (Sandbox Code Playgroud)

我想选择

                0         1         2         3
bar one -0.424972  0.567020  0.276232 -1.087401
baz one  0.404705  0.577046 -1.715002 -1.039268
foo one  1.075770 -0.109050  1.643563 -1.469388
qux one -1.294524  0.413738  0.276662 -0.472035

Run Code Online (Sandbox Code Playgroud)

甚至作为这种格式

            0         1         2         3
one -0.424972  0.567020  0.276232 -1.087401
one  0.404705  0.577046 -1.715002 -1.039268
one  1.075770 -0.109050  1.643563 -1.469388
one -1.294524  0.413738  0.276662 -0.472035

Run Code Online (Sandbox Code Playgroud)

我试过了df['bar','one],它不起作用。我现在确定我应该如何访问多级索引。

Myk*_*tko 5

您可以使用 MultiIndex 切片(使用slice(None)而不是冒号):

df = df.loc[(slice(None), 'one'), :]
Run Code Online (Sandbox Code Playgroud)

结果:

                0         1         2         3
bar one -0.424972  0.567020  0.276232 -1.087401
baz one  0.404705  0.577046 -1.715002 -1.039268
foo one  1.075770 -0.109050  1.643563 -1.469388
qux one -1.294524  0.413738  0.276662 -0.472035
Run Code Online (Sandbox Code Playgroud)

最后你可以删除第一个索引列:

df.index = df.index.droplevel(0)
Run Code Online (Sandbox Code Playgroud)

结果:

            0         1         2         3
one -0.424972  0.567020  0.276232 -1.087401
one  0.404705  0.577046 -1.715002 -1.039268
one  1.075770 -0.109050  1.643563 -1.469388
one -1.294524  0.413738  0.276662 -0.472035
Run Code Online (Sandbox Code Playgroud)


jez*_*ael 2

如果需要,请使用DataFrame.xs两个级别添加drop_level=False

df1 = df.xs('one', level=1, drop_level=False)
print (df1)
bar one -0.424972  0.567020  0.276232 -1.087401
baz one  0.404705  0.577046 -1.715002 -1.039268
foo one  1.075770 -0.109050  1.643563 -1.469388
qux one -1.294524  0.413738  0.276662 -0.472035
Run Code Online (Sandbox Code Playgroud)

DataFrame.reset_index对于第二个,通过with删除第一级drop=True,因此可以通过标签选择DataFrame.loc

df2 = df.reset_index(level=0, drop=True).loc['one']
#alternative
#df2 = df.xs('one', level=1, drop_level=False).reset_index(level=0, drop=True)
print (df2)
            0         1         2         3
one -0.424972  0.567020  0.276232 -1.087401
one  0.404705  0.577046 -1.715002 -1.039268
one  1.075770 -0.109050  1.643563 -1.469388
one -1.294524  0.413738  0.276662 -0.472035
Run Code Online (Sandbox Code Playgroud)

更常见的是在没有重复级别的情况下使用xs- 因此在one删除此级别后选择:

df3 = df.xs('one', level=1)
print (df3)
            0         1         2         3
bar -0.424972  0.567020  0.276232 -1.087401
baz  0.404705  0.577046 -1.715002 -1.039268
foo  1.075770 -0.109050  1.643563 -1.469388
qux -1.294524  0.413738  0.276662 -0.472035
Run Code Online (Sandbox Code Playgroud)