Zuz*_*uza 5 python keras tensorflow batch-normalization gradienttape
假设我们有一个使用 BatchNormalization 的简单 Keras 模型:
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(1,)),
tf.keras.layers.BatchNormalization()
])
Run Code Online (Sandbox Code Playgroud)
如何实际使用 GradientTape?以下似乎不起作用,因为它没有更新移动平均线?
# model training... we want the output values to be close to 150
for i in range(1000):
x = np.random.randint(100, 110, 10).astype(np.float32)
with tf.GradientTape() as tape:
y = model(np.expand_dims(x, axis=1))
loss = tf.reduce_mean(tf.square(y - 150))
grads = tape.gradient(loss, model.variables)
opt.apply_gradients(zip(grads, model.variables))
Run Code Online (Sandbox Code Playgroud)
特别是,如果您检查移动平均值,它们将保持不变(检查 model.variables,平均值始终为 0 和 1)。我知道可以使用 .fit() 和 .predict(),但我想使用 GradientTape 并且我不知道如何执行此操作。某些版本的文档建议更新 update_ops,但这似乎在急切模式下不起作用。
特别是,经过上述训练后,以下代码将不会输出任何接近 150 的结果。
x = np.random.randint(200, 210, 100).astype(np.float32)
print(model(np.expand_dims(x, axis=1)))
Run Code Online (Sandbox Code Playgroud)
使用梯度磁带模式 BatchNormalization 层应使用参数 Training=True 进行调用
例子:
inp = KL.Input( (64,64,3) )
x = inp
x = KL.Conv2D(3, kernel_size=3, padding='same')(x)
x = KL.BatchNormalization()(x, training=True)
model = KM.Model(inp, x)
Run Code Online (Sandbox Code Playgroud)
然后移动变量被正确更新
>>> model.layers[2].weights[2]
<tf.Variable 'batch_normalization/moving_mean:0' shape=(3,) dtype=float32, numpy
=array([-0.00062087, 0.00015137, -0.00013239], dtype=float32)>
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1488 次 |
| 最近记录: |