Liv*_*ire 2 sql timestamp google-bigquery
所以我有一个包含新闻文章的网站,我试图计算每个月的 4 种用户类型。用户类型有:
1、新用户:当月注册(首次浏览文章)并当月浏览过文章的用户。
2. 留存用户:上个月的新用户或上个月和当月浏览过文章的用户。
3. 流失用户:上个月未查看过文章的新用户或保留用户,或者上个月流失的用户。
4. 复活用户:上个月流失的用户,当月浏览过一篇文章。
**User Table A - Unique User Article Views**
- Current month = 2019-04-01 00:00:00 UTC
| user_id | viewed_at |
------------------------------------------
| 4 | 2019-04-01 00:00:00 UTC |
| 3 | 2019-04-01 00:00:00 UTC |
| 2 | 2019-04-01 00:00:00 UTC |
| 1 | 2019-03-01 00:00:00 UTC |
| 3 | 2019-03-01 00:00:00 UTC |
| 2 | 2019-02-01 00:00:00 UTC |
| 1 | 2019-02-01 00:00:00 UTC |
| 1 | 2019-01-01 00:00:00 UTC |
The table above outlines the following user types:
2019-01-01
* User 1: New
2019-02-01
* User 1: Retained
* User 2: New
2019-03-01
* User 1: Retained
* User 2: Churned
* User 3: New
2019-04-01
* User 1: Churned
* User 2: Resurrected
* User 3: Retained
* User 4: New
Run Code Online (Sandbox Code Playgroud)
我想要的表计算每个月每种用户类型的不同 user_id 。
| month_viewed_at | ut_new | ut_retained | ut_churned | ut_resurrected
------------------------------------------------------------------------------------
| 2019-04-01 00:00:00 UTC | 1 | 1 | 1 | 1
| 2019-03-01 00:00:00 UTC | 1 | 1 | 1 | 0
| 2019-02-01 00:00:00 UTC | 1 | 1 | 0 | 0
| 2019-01-01 00:00:00 UTC | 1 | 0 | 0 | 0
Run Code Online (Sandbox Code Playgroud)
我只是不知道从哪里开始
希望您阅读我所有的评论并亲自尝试一些东西,但由于我没有看到任何更新,我想您仍然停留在这里 - 所以我们开始......
以下是 BigQuery 标准 SQL,应该可以为您提供指导
#standardSQL
WITH temp1 AS (
SELECT user_id,
FORMAT_DATE('%Y-%m', DATE(viewed_at)) month_viewed_at,
DATE_DIFF(DATE(viewed_at), '2000-01-01', MONTH) pos,
DATE_DIFF(DATE(MIN(viewed_at) OVER(PARTITION BY user_id)), '2000-01-01', MONTH) first_pos
FROM `project.dataset.table`
), temp2 AS (
SELECT *, pos = first_pos AS new_user
FROM temp1
), temp3 AS (
SELECT *, LAST_VALUE(new_user) OVER(win) OR pos - 1 = LAST_VALUE(pos) OVER(win) AS retained_user
FROM temp2
WINDOW win AS (PARTITION BY user_id ORDER BY pos RANGE BETWEEN 1 PRECEDING AND 1 PRECEDING)
)
SELECT month_viewed_at,
COUNTIF(new_user) AS new_users,
COUNTIF(retained_user) AS retained_users
FROM temp3
GROUP BY month_viewed_at
-- ORDER BY month_viewed_at DESC
Run Code Online (Sandbox Code Playgroud)
如果应用到您的样本数据 - 结果是
Row month_viewed_at new_users retained_users
1 2019-04 1 1
2 2019-03 1 1
3 2019-02 1 1
4 2019-01 1 0
Run Code Online (Sandbox Code Playgroud)
在temp1
我们通过将viewed_at格式化为在输出广告中呈现所需的格式来准备数据时,我们还将其转换为自一些抽象数据(2000-02-02)以来的连续月份数,因此我们可以使用具有RANGE而不是ROWS的分析
功能temp2
我们只是简单地识别新用户和temp3
保留用户
我想,这是一个好的开始,所以我把剩下的留给你
归档时间: |
|
查看次数: |
921 次 |
最近记录: |