Ama*_*ngh 1 python fuzzy-comparison pandas fuzzywuzzy
有什么方法可以在熊猫中使用fuzzywuzzy来加速模糊字符串匹配。
我有一个数据框,extra_names它的名称我想与另一个数据框运行模糊匹配names_df。
>> extra_names.head()
not_matching
0 Vij Sales
1 Crom Electronics
2 REL Digital
3 Bajaj Elec
4 Reliance Digi
>> len(extra_names)
6500
>> names_df.head()
names types
0 Vijay Sales 1
1 Croma Electronics 1
2 Reliance Digital 2
3 Bajaj Electronics 2
4 Pai Electricals 2
>> len(names_df)
250
Run Code Online (Sandbox Code Playgroud)
截至目前,我正在使用以下代码运行逻辑,但它需要永远完成。
choices = names_df['names'].unique().tolist()
def fuzzy_match(row):
best_match = process.extractOne(row, choices)
return best_match[0], best_match[1] if best_match else '',''
%%timeit
extra_names['best_match'], extra_names['match%'] = extra_names['not_matching'].apply(fuzzy_match)
Run Code Online (Sandbox Code Playgroud)
当我发布这个问题时,查询仍在运行。有没有办法加快这个模糊字符串匹配过程?
让我们试试difflib:
import difflib
from functools import partial
f = partial(
difflib.get_close_matches, possibilities=names_df['names'].tolist(), n=1)
matches = extra_names['not_matching'].map(f).str[0].fillna('')
scores = [
difflib.SequenceMatcher(None, x, y).ratio()
for x, y in zip(matches, extra_names['not_matching'])
]
extra_names.assign(best=matches, score=scores)
not_matching best score
0 Vij Sales Vijay Sales 0.900000
1 Crom Electronics Croma Electronics 0.969697
2 REL Digital Reliance Digital 0.666667
3 Bajaj Elec Bajaj Electronics 0.740741
4 Reliance Digi Reliance Digital 0.896552
Run Code Online (Sandbox Code Playgroud)