在 2.0 会话中迭代 tf.data.Dataset 的正确方法

leo*_*ard 8 python tensorflow tfrecord tensorflow-datasets

我已经*.tfrecordyoutube-8m 项目下载了一些数据。您可以使用以下命令下载一小部分数据:

curl data.yt8m.org/download.py | shard=1,100 partition=2/video/train mirror=us python

我正在尝试了解如何使用新的 tf.data API。我想熟悉人们遍历数据集的典型方式。我一直在使用 TF 网站上的指南和这张幻灯片:Derek Murray 的幻灯片

这是我定义数据集的方式:

# Use interleave() and prefetch() to read many files concurrently.
files = tf.data.Dataset.list_files("./youtube_vids/*.tfrecord")
dataset = files.interleave(lambda x: tf.data.TFRecordDataset(x).prefetch(100),
                           cycle_length=8)

# Use num_parallel_calls to parallelize map().
dataset = dataset.map(lambda record: tf.parse_single_example(record, feature_map),
                     num_parallel_calls=2) #

# put in x,y output form
dataset = dataset.map(lambda x: (x['mean_rgb'], x['id']))

# shuffle
dataset = dataset.shuffle(10000)

#one epoch
dataset = dataset.repeat(1)
dataset = dataset.batch(200)

#Use prefetch() to overlap the producer and consumer.
dataset = dataset.prefetch(10)
Run Code Online (Sandbox Code Playgroud)

现在,我知道在急切执行模式下我可以

for x,y in dataset:
    x,y
Run Code Online (Sandbox Code Playgroud)

但是,当我尝试按如下方式创建迭代器时:

# A one-shot iterator automatically initializes itself on first use.
iterator = dset.make_one_shot_iterator()

# The return value of get_next() matches the dataset element type.
images, labels = iterator.get_next()
Run Code Online (Sandbox Code Playgroud)

并与会话一起运行

with tf.Session() as sess:

    # Loop until all elements have been consumed.
    try:
        while True:
            r = sess.run(images)
    except tf.errors.OutOfRangeError:
        pass
Run Code Online (Sandbox Code Playgroud)

我收到警告

Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)`.
Run Code Online (Sandbox Code Playgroud)

所以,这是我的问题:

在会话中迭代数据集的正确方法是什么?这只是v1和v2差异的问题吗?

此外,将数据集直接传递给估计器的建议意味着输入函数也有一个迭代器,如上面 Derek Murray 的幻灯片中定义的那样,对吗?

Sha*_*rky 8

至于 Estimator API,您不必指定迭代器,只需将数据集对象作为输入函数传递即可。

def input_fn(filename):
    dataset = tf.data.TFRecordDataset(filename)
    dataset = dataset.shuffle().repeat()
    dataset = dataset.map(parse_func)
    dataset = dataset.batch()
    return dataset

estimator.train(input_fn=lambda: input_fn())
Run Code Online (Sandbox Code Playgroud)

在 TF 2.0 数据集变得可迭代,因此,正如警告消息所说,您可以使用

for x,y in dataset:
    x,y
Run Code Online (Sandbox Code Playgroud)