Jos*_*ua 21 python machine-learning computer-vision python-2.7 python-3.x
我遇到了RunTimeError一段时间试图在我机器的 CPU 而不是 GPU 中运行代码的情况。代码最初来自这个 GitHub 项目 - IBD: Interpretable Basis Decomposition for Visual Explanation。这是一个研究项目。我尝试将 CUDA 作为false并查看此网站上的其他解决方案。
GPU = False # running on GPU is highly suggested
CLEAN = False # set to "True" if you want to clean the temporary large files after generating result
APP = "classification" # Do not change! mode choide: "classification", "imagecap", "vqa". Currently "imagecap" and "vqa" are not supported.
CATAGORIES = ["object", "part"] # Do not change! concept categories that are chosen to detect: "object", "part", "scene", "material", "texture", "color"
CAM_THRESHOLD = 0.5 # the threshold used for CAM visualization
FONT_PATH = "components/font.ttc" # font file path
FONT_SIZE = 26 # font size
SEG_RESOLUTION = 7 # the resolution of cam map
BASIS_NUM = 7 # In decomposition, this is to decide how many concepts are used to interpret the weight vector of a class.
Run Code Online (Sandbox Code Playgroud)
这是错误:
Traceback (most recent call last):
File "test.py", line 22, in <module>
model = loadmodel()
File "/home/joshuayun/Desktop/IBD/loader/model_loader.py", line 48, in loadmodel
checkpoint = torch.load(settings.MODEL_FILE)
File "/home/joshuayun/.local/lib/python3.6/site-packages/torch/serialization.py", line 387, in load
return _load(f, map_location, pickle_module, **pickle_load_args)
File "/home/joshuayun/.local/lib/python3.6/site-packages/torch/serialization.py", line 574, in _load
result = unpickler.load()
File "/home/joshuayun/.local/lib/python3.6/site-packages/torch/serialization.py", line 537, in persistent_load
deserialized_objects[root_key] = restore_location(obj, location)
File "/home/joshuayun/.local/lib/python3.6/site-packages/torch/serialization.py", line 119, in default_restore_location
result = fn(storage, location)
File "/home/joshuayun/.local/lib/python3.6/site-packages/torch/serialization.py", line 95, in _cuda_deserialize
device = validate_cuda_device(location)
File "/home/joshuayun/.local/lib/python3.6/site-packages/torch/serialization.py", line 79, in validate_cuda_device
raise RuntimeError('Attempting to deserialize object on a CUDA '
RuntimeError: Attempting to deserialize object on a CUDA device but
torch.cuda.is_available() is False. If you are running on a CPU-only machine,
please use torch.load with map_location='cpu' to map your storages to the CPU.
Run Code Online (Sandbox Code Playgroud)
Ban*_*ras 29
只是给出一个较小的答案。为了解决这个问题,你可以改变命名的函数的参数load()中serialization.py的文件。这存储在:./site-package/torch/serialization.py
写:
def load(f, map_location='cpu', pickle_module=pickle, **pickle_load_args):
Run Code Online (Sandbox Code Playgroud)
代替:
def load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
Run Code Online (Sandbox Code Playgroud)
希望能帮助到你。
Bip*_*Das 22
如果您没有 gpu,则使用map_location=torch.device('cpu')和 load model.load()
my_model = net.load_state_dict(torch.load('classifier.pt', map_location=torch.device('cpu')))
Run Code Online (Sandbox Code Playgroud)
Spi*_*ong 18
我尝试在加载函数中添加“map_location='cpu'”,但它对我不起作用。
如果您在仅使用 CPU 的计算机上使用由 GPU 训练的模型,那么您可能会遇到此错误。您可以尝试这个解决方案。
class CPU_Unpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == 'torch.storage' and name == '_load_from_bytes':
return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
else: return super().find_class(module, name)
contents = CPU_Unpickler(f).load()
Run Code Online (Sandbox Code Playgroud)
小智 6
“如果您在仅使用 CPU 的机器上运行,请使用带有 map_location=torch.device('cpu') 的 torch.load 将您的存储映射到 CPU。”
model = torch.load('model/pytorch_resnet50.pth',map_location ='cpu')
Run Code Online (Sandbox Code Playgroud)
小智 6
您可能需要重新安装您所需的 CUDA Toolkit 版本的 torch。
从入门页面查找命令并重新安装。
# uninstall first
pip uninstall torch torchvision torchaudio
# e.g. for CUDA Toolkit 1.8
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Run Code Online (Sandbox Code Playgroud)
小智 5
您可以在加载时使用 torch.load 的 map_location 参数重新映射 Tensor 位置。
在以下存储库中,在文件“test.py”中,model = loadmodel() 调用 model_loader.py 文件以使用 torch.load() 加载模型。
虽然这只会映射来自 GPU0 的存储,但添加 map_location:
torch.load(settings.MODEL_FILE, map_location={'cuda:0': 'cpu'})
Run Code Online (Sandbox Code Playgroud)
在 model_loader.py 文件中,添加 map_location={'cuda:0': 'cpu'} 任何地方,torch.load() 函数被调用。
当您陈述问题时,提示您正在尝试在非 cuda 机器上使用 cuda 模型。请注意错误消息的详细信息 - please use torch.load with map_location='cpu' to map your storages to the CPU。当我尝试在我的仅 cpu 机器上加载(从检查点)预训练模型时,我遇到了类似的问题。该模型是在 cuda 机器上训练的,因此无法正确加载。一旦我将map_location='cpu'参数添加到load方法中,一切就正常了。