Seb*_*ado 5 python machine-learning deep-learning tensorflow tensorflow2.0
我正在尝试通过以下方式创建输入:
\n\n Tx = 318\n n_freq = 101\n input_anchor = Input(shape=(n_freq,Tx), name=\'input_anchor\')\n
Run Code Online (Sandbox Code Playgroud)\n\n当我跑步时:
\n\n input_anchor.shape\n
Run Code Online (Sandbox Code Playgroud)\n\n我得到:
\n\n TensorShape([None, 101, 318])\n
Run Code Online (Sandbox Code Playgroud)\n\n后来,当我尝试在模型中使用该输入时,出现以下错误:
\n\n TypeError: Cannot iterate over a tensor with unknown first dimension.\n
Run Code Online (Sandbox Code Playgroud)\n\n在张量流的 opy.py中,我发现这个代码块很可能是我的代码失败的地方:
\n\n def __iter__(self):\n if not context.executing_eagerly():\n raise TypeError(\n "Tensor objects are only iterable when eager execution is "\n "enabled. To iterate over this tensor use tf.map_fn.")\n shape = self._shape_tuple()\n if shape is None:\n raise TypeError("Cannot iterate over a tensor with unknown shape.")\n if not shape:\n raise TypeError("Cannot iterate over a scalar tensor.")\n if shape[0] is None:\n raise TypeError(\n "Cannot iterate over a tensor with unknown first dimension.")\n for i in xrange(shape[0]):\n yield self[i]\n\n
Run Code Online (Sandbox Code Playgroud)\n\n如果你想在这里看到我的整个模型实现,那就是:
\n\n def base_model(input_shape):\n\n X_input = Input(shape = input_shape)\n\n\n # Step 1: CONV layer (\xe2\x89\x884 lines)\n X = Conv1D(196,kernel_size = 15, strides = 4)(X_input) # CONV1D\n X = BatchNormalization()(X) # Batch normalization\n X = Activation(\'relu\')(X) # ReLu activation\n X = Dropout(rate = 0.2)(X) # dropout (use 0.8)\n\n # Step 2: First GRU Layer (\xe2\x89\x884 lines)\n X = LSTM(units = 128, return_sequences = True)(X_input) # GRU (use 128 units and return the sequences)\n X = Dropout(rate = 0.2)(X) # dropout (use 0.8)\n X = BatchNormalization()(X) # Batch normalization\n\n # Step 3: Second GRU Layer (\xe2\x89\x884 lines)\n X = LSTM(units = 128, return_sequences = True)(X) # GRU (use 128 units and return the sequences)\n X = Dropout(rate = 0.2)(X) # dropout (use 0.8)\n X = BatchNormalization()(X) # Batch normalization\n X = Dropout(rate = 0.2)(X) # dropout (use 0.8)\n\n # Step 4: Third GRU Layer (\xe2\x89\x884 lines)\n X = LSTM(units = 128)(X) # GRU (use 128 units and return the sequences)\n X = Dropout(rate = 0.2)(X) # dropout (use 0.8)\n X = BatchNormalization()(X) # Batch normalization\n X = Dropout(rate = 0.2)(X) # dropout (use 0.8)\n\n X = Dense(64)(X)\n\n base_model = Model(inputs = X_input, outputs = X)\n\n return base_model \n\n def speech_model(input_shape, base_model):\n\n #get triplets vectors\n input_anchor = Input(shape=input_shape, name=\'input_anchor\')\n input_positive = Input(shape=input_shape, name=\'input_positive\')\n input_negative = Input(shape=input_shape, name=\'input_negative\')\n\n vec_anchor = base_model(input_anchor)\n vec_positive = base_model(input_positive)\n vec_negative = base_model(input_negative)\n\n #Concatenate vectors vec_positive, vec_negative\n concat_layer = concatenate([vec_anchor,vec_positive,vec_negative], axis = -1, name=\'concat_layer\')\n\n model = Model(inputs = [input_anchor,input_positive,input_negative], outputs = concat_layer, name = \'speech_to_vec\')\n #model = Model(inputs = [input_anchor,input_positive,input_negative], outputs = [vec_anchor,vec_positive,vec_negative], name = \'speech_to_vec\')\n #model = Model(inputs = [input_anchor,input_positiv], outputs=vec_anchor)\n\n\n return model \n
Run Code Online (Sandbox Code Playgroud)\n\n以及打破这一切并产生前面提到的错误的行
\n\n\n speech_model = speech_model(input_shape = (n_freq, Tx), base_model = base_model)\n
Run Code Online (Sandbox Code Playgroud)\n\n非常感谢您的阅读,非常感谢任何解决此问题的帮助。
\n您的base_model(input_shape)
函数要求您传入tuple
,但您传递Input Layer
给了它。
# change
vec_anchor = base_model(input_anchor)
vec_positive = base_model(input_positive)
vec_negative = base_model(input_negative)
# to
vec_anchor = base_model(input_shape)
vec_positive = base_model(input_shape)
vec_negative = base_model(input_shape)
Run Code Online (Sandbox Code Playgroud)
此外,由于concatenate
无法连接多个模型类型,因此您需要更正最终模型的输入和输出。
concat_layer = concatenate([vec_anchor.output,vec_positive.output,vec_negative.output], axis = -1, name='concat_layer')
model = Model(inputs = [vec_anchor.input,vec_positive.input,vec_negative.input], outputs = concat_layer, name = 'speech_to_vec')
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
10961 次 |
最近记录: |