Pra*_*een 4 python gensim scikit-learn countvectorizer tfidfvectorizer
我希望看到使用TFIDFVectorizer和 的列表之间的相似性CountVectorizer。
我有如下列表:
list1 = [['i','love','machine','learning','its','awesome'],
['i', 'love', 'coding', 'in', 'python'],
['i', 'love', 'building', 'chatbots']]
list2 = ['i', 'love', 'chatbots']
Run Code Online (Sandbox Code Playgroud)
我希望看到list1[0]and list2、list1[1]and list2、list1[2]and之间的相似性list2。
期望输出应该是这样的[0.99 , 0.67, 0.54]
文档 中的内容TfidfVectorizer是:
“相当于 CountVectorizer 后跟 TfidfTransformer”。
这是代码
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = [
"i love machine learning its awesome",
"i love coding in python",
"i love building chatbots",
"i love chatbots"
]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)
# print(vectorizer.get_feature_names())
arr = X.toarray()
Run Code Online (Sandbox Code Playgroud)
以及使用余弦相似度的答案
# similarity of yours `list1[0] and list2`
np.dot(arr[0], arr[3]) # gives ~0.139
# similarity of yours `list1[1] and list2`
np.dot(arr[1], arr[3]) # gives ~0.159
# similarity of yours `list1[2] and list2`
np.dot(arr[2], arr[3]) # gives ~0.687
Run Code Online (Sandbox Code Playgroud)
或使用杰卡德相似度,CountVectorizer我认为更接近您的期望
from sklearn.metrics import jaccard_score
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
arr = X.toarray()
jaccard_score(arr[0], arr[3]) # gives 0.5
jaccard_score(arr[1], arr[3]) # gives 0.6
jaccard_score(arr[2], arr[3]) # gives 0.9
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2318 次 |
| 最近记录: |