如何解决'列标签'Avg_Threat_Score'不唯一。'?熊猫问题

MD *_*HAN 1 python pivot pivot-table pandas

运行代码时,我面临以下错误。错误 - 列标签“Avg_Threat_Score”不是唯一的。

我正在创建一个数据透视表并希望将值从高到低排序。

pt = df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'], 
        aggfunc = {
                   'Threat Score': np.mean,
                   'Score' :[np.mean, lambda x: len(x.dropna())]
                  }, 
        margins = False) 

new_col =['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
pt.columns = [new_col]
#befor this code is working, after that now working 
df = df.reindex(pt.sort_values
                    (by = 'Avg_Threat_Score',ascending=False).index)
Run Code Online (Sandbox Code Playgroud)

需要对列“Avg_Threat_Score”的值进行高低排序

jez*_*ael 5

You need pass new columns names by list, not by nested list, because pandas create MultiIndex with one level.

new_col =['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
pt.columns = [new_col]
Run Code Online (Sandbox Code Playgroud)

Is same like:

pt.columns = [['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']]
Run Code Online (Sandbox Code Playgroud)

ValueError: The column label 'Avg_Threat_Score' is not unique.
For a multi-index, the label must be a tuple with elements corresponding to each level.

So use:

pt.columns = ['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
Run Code Online (Sandbox Code Playgroud)

Sample:

df = pd.DataFrame({
        'User Name':list('ababaa'),
         'Threat Score':[4,5,4,np.nan,5,4],
         'Score':[np.nan,8,9,4,2,np.nan],
         'D':[1,3,5,7,1,0]})

pt = (df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'], 
        aggfunc = {
                   'Threat Score': np.mean,
                   'Score' :[np.mean, lambda x: len(x.dropna())]
                  }, 
        margins = False))

pt.columns = ['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
print (pt)
           User Name Count  AVG_TH_Score  Avg_Threat_Score
User Name                                                 
a                      2.0           5.5              4.25
b                      2.0           6.0              5.00
Run Code Online (Sandbox Code Playgroud)

And then for sorting by ordering from Avg_Threat_Score use ordered Categorical for column User Name, so last sort_values working:

names = pt.sort_values(by = 'Avg_Threat_Score',ascending=False).index
print (names)
#Index(['b', 'a'], dtype='object', name='User Name')

df['User Name'] = pd.CategoricalIndex(df['User Name'], categories=names, ordered=True)
df = df.sort_values('User Name')
Run Code Online (Sandbox Code Playgroud)
print (df)
  User Name  Threat Score  Score  D
1         b           5.0    8.0  3
3         b           NaN    4.0  7
0         a           4.0    NaN  1
2         a           4.0    9.0  5
4         a           5.0    2.0  1
5         a           4.0    NaN  0
Run Code Online (Sandbox Code Playgroud)