MD *_*HAN 1 python pivot pivot-table pandas
运行代码时,我面临以下错误。错误 - 列标签“Avg_Threat_Score”不是唯一的。
我正在创建一个数据透视表并希望将值从高到低排序。
pt = df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'],
aggfunc = {
'Threat Score': np.mean,
'Score' :[np.mean, lambda x: len(x.dropna())]
},
margins = False)
new_col =['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
pt.columns = [new_col]
#befor this code is working, after that now working
df = df.reindex(pt.sort_values
(by = 'Avg_Threat_Score',ascending=False).index)
Run Code Online (Sandbox Code Playgroud)
需要对列“Avg_Threat_Score”的值进行高低排序
You need pass new columns names by list, not by nested list, because pandas create MultiIndex with one level.
new_col =['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
pt.columns = [new_col]
Run Code Online (Sandbox Code Playgroud)
Is same like:
pt.columns = [['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']]
Run Code Online (Sandbox Code Playgroud)
ValueError: The column label 'Avg_Threat_Score' is not unique.
For a multi-index, the label must be a tuple with elements corresponding to each level.
So use:
pt.columns = ['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
Run Code Online (Sandbox Code Playgroud)
Sample:
df = pd.DataFrame({
'User Name':list('ababaa'),
'Threat Score':[4,5,4,np.nan,5,4],
'Score':[np.nan,8,9,4,2,np.nan],
'D':[1,3,5,7,1,0]})
pt = (df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'],
aggfunc = {
'Threat Score': np.mean,
'Score' :[np.mean, lambda x: len(x.dropna())]
},
margins = False))
pt.columns = ['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
print (pt)
User Name Count AVG_TH_Score Avg_Threat_Score
User Name
a 2.0 5.5 4.25
b 2.0 6.0 5.00
Run Code Online (Sandbox Code Playgroud)
And then for sorting by ordering from Avg_Threat_Score use ordered Categorical for column User Name, so last sort_values working:
names = pt.sort_values(by = 'Avg_Threat_Score',ascending=False).index
print (names)
#Index(['b', 'a'], dtype='object', name='User Name')
df['User Name'] = pd.CategoricalIndex(df['User Name'], categories=names, ordered=True)
df = df.sort_values('User Name')
Run Code Online (Sandbox Code Playgroud)
print (df)
User Name Threat Score Score D
1 b 5.0 8.0 3
3 b NaN 4.0 7
0 a 4.0 NaN 1
2 a 4.0 9.0 5
4 a 5.0 2.0 1
5 a 4.0 NaN 0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4116 次 |
| 最近记录: |