为什么“精确”限定词不生效?

Rus*_*lan 6 c++ opengl floating-point precision glsl

我正在尝试改进Henry Thasler的双-单算法的GLSL实现(来自他的GLSL Mandelbrot演示),以在Linux上的NVIDIA图形上可靠地工作。我最近了解到,自OpenGL的4.0(§4.7的精确预选赛的规范)或GL_ARB_gpu_shader5延长(规格),我们可以使用precise限定词,使计算遵循GLSL源指定的算术运算的精确序列。

但是以下尝试似乎并没有任何改善:

#version 330
#extension GL_ARB_gpu_shader5 : require

vec2 ds_add(vec2 dsa, vec2 dsb)
{
    precise float t1 = dsa.x + dsb.x;
    precise float e = t1 - dsa.x;
    precise float t2 = ((dsb.x - e) + (dsa.x - (t1 - e))) + dsa.y + dsb.y;

    precise vec2 dsc;
    dsc.x = t1 + t2;
    dsc.y = t2 - (dsc.x - t1);
    return dsc;
}
Run Code Online (Sandbox Code Playgroud)

结果与未precise添加的结果相同。我检查了算法本身是否正确:它可以precise在Intel Core i7-4765T内置图形上按原样运行(即使没有),并且如果我隐藏了一些禁止优化的变量,那么NVidia也会给出正确的结果。这是我禁止优化的方法:

#version 330

#define hide(x) ((x)*one)
uniform float one=1;

vec2 ds_add(vec2 dsa, vec2 dsb)
{
    float t1 = dsa.x + dsb.x;
    float e = hide(t1) - dsa.x;
    float t2 = ((dsb.x - e) + (dsa.x - (t1 - e))) + dsa.y + dsb.y;

    vec2 dsc;
    dsc.x = t1 + t2;
    dsc.y = t2 - (hide(dsc.x) - t1);
    return dsc;
}
Run Code Online (Sandbox Code Playgroud)

因此,显然,我使用了precise不正确的限定词。但是这里到底有什么问题呢?

作为参考,我将NVidia GeForce GTX 750Ti与二进制nvidia驱动程序390.116一起使用。这是完整的C ++测试:

#include <cmath>
#include <vector>
#include <string>
#include <limits>
#include <iomanip>
#include <iostream>
// glad.h is generated by the following command:
// glad --out-path=. --generator=c --omit-khrplatform --api="gl=3.3" --profile=core --extensions=
#include "glad/glad.h"
#include <GL/freeglut.h>
#include <glm/glm.hpp>
using glm::vec4;

GLuint vao, vbo;
GLuint texFBO;
GLuint program;
GLuint fbo;
int width=1, height=2;

void printShaderOutput(int texW, int texH)
{
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, texFBO);

    std::vector<vec4> data(texW*texH);
    glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_FLOAT, data.data());
    std::cout << "a,b,sum,relError(sum),note\n";
    for(int i=0;i<width;++i)
    {
        const auto a=double(data[i+width*0].x)+double(data[i+width*0].y);
        const auto b=double(data[i+width*0].z)+double(data[i+width*0].w);
        const auto sum=double(data[i+width*1].x)+double(data[i+width*1].y);
        const auto trueSum=a+b;
        const auto sumErr=(sum-trueSum)/trueSum;
        std::cout << std::setprecision(std::numeric_limits<double>::max_digits10)
                  << a << ',' << b << ','
                  << sum << ','
                  << std::setprecision(3)
                  << sumErr << ','
                  << (std::abs(sumErr)>1e-14 ? "WARN" : "OK")
                  << '\n';
    }
    std::cout.flush();
}

GLuint makeShader(GLenum type, std::string const& srcStr)
{
    const auto shader=glCreateShader(type);
    const GLint srcLen=srcStr.size();
    const GLchar*const src=srcStr.c_str();
    glShaderSource(shader, 1, &src, &srcLen);
    glCompileShader(shader);
    GLint status=-1;
    glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
    assert(glGetError()==GL_NO_ERROR);
    assert(status);
    return shader;
}

void loadShaders()
{
    program=glCreateProgram();

    const auto vertexShader=makeShader(GL_VERTEX_SHADER, 1+R"(
#version 330
in vec4 vertex;
void main() { gl_Position=vertex; }
)");
    glAttachShader(program, vertexShader);

    const auto fragmentShader=makeShader(GL_FRAGMENT_SHADER, 1+R"(
#version 330
#extension GL_ARB_gpu_shader5 : require

vec2 ds_add(vec2 dsa, vec2 dsb)
{
    precise float t1 = dsa.x + dsb.x;
    precise float e = t1 - dsa.x;
    precise float t2 = ((dsb.x - e) + (dsa.x - (t1 - e))) + dsa.y + dsb.y;

    precise vec2 dsc;
    dsc.x = t1 + t2;
    dsc.y = t2 - (dsc.x - t1);
    return dsc;
}

uniform vec2 a, b;
out vec4 color;

void main()
{
    if(gl_FragCoord.y<1)   // first row
        color=vec4(a,b);
    else if(gl_FragCoord.y<2)   // second row
        color=vec4(ds_add(a,b),0,0);
}

)");
    glAttachShader(program, fragmentShader);

    glLinkProgram(program);
    GLint status=0;
    glGetProgramiv(program, GL_LINK_STATUS, &status);
    assert(glGetError()==GL_NO_ERROR);
    assert(status);

    glDetachShader(program, fragmentShader);
    glDeleteShader(fragmentShader);

    glDetachShader(program, vertexShader);
    glDeleteShader(vertexShader);
}

void setupBuffers()
{
    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);
    glGenBuffers(1, &vbo);
    glBindBuffer(GL_ARRAY_BUFFER, vbo);
    const GLfloat vertices[]=
    {
        -1, -1,
         1, -1,
        -1,  1,
         1,  1,
    };
    glBufferData(GL_ARRAY_BUFFER, sizeof vertices, vertices, GL_STATIC_DRAW);
    constexpr GLuint attribIndex=0;
    constexpr int coordsPerVertex=2;
    glVertexAttribPointer(attribIndex, coordsPerVertex, GL_FLOAT, false, 0, 0);
    glEnableVertexAttribArray(attribIndex);
    glBindVertexArray(0);
}

bool init()
{
    if(!gladLoadGL())
    {
        std::cerr << "Failed to initialize GLAD\n";
        return false;
    }
    if(!GLAD_GL_VERSION_3_3)
    {
        std::cerr << "OpenGL 3.3 not supported\n";
        return false;
    }

    glGenTextures(1, &texFBO);
    glGenFramebuffers(1,&fbo);

    loadShaders();
    setupBuffers();

    glViewport(0,0,width,height);

    glBindTexture(GL_TEXTURE_2D,texFBO);
    glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA32F,width,height,0,GL_RGBA,GL_UNSIGNED_BYTE,nullptr);
    glBindTexture(GL_TEXTURE_2D,0);
    glBindFramebuffer(GL_FRAMEBUFFER,fbo);
    glFramebufferTexture2D(GL_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D,texFBO,0);
    const auto status=glCheckFramebufferStatus(GL_FRAMEBUFFER);
    assert(status==GL_FRAMEBUFFER_COMPLETE);
    glBindFramebuffer(GL_FRAMEBUFFER,0);

    return true;
}

void display()
{
    const static bool inited=init();
    if(!inited) std::exit(1);

    glBindFramebuffer(GL_FRAMEBUFFER,fbo);

    glUseProgram(program);
#define SPLIT_DOUBLE_TO_FLOATS(x) GLfloat(x),GLfloat(x-GLfloat(x))
    glUniform2f(glGetUniformLocation(program,"a"),SPLIT_DOUBLE_TO_FLOATS(3.1415926535897932));
    glUniform2f(glGetUniformLocation(program,"b"),SPLIT_DOUBLE_TO_FLOATS(2.7182818284590452));
    glUniform1f(glGetUniformLocation(program,"rtWidth"),width);

    glBindVertexArray(vao);
    glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
    glBindVertexArray(0);

    printShaderOutput(width, height);
    std::exit(0);

    glFinish();
}

int main(int argc, char** argv)
{
    glutInitContextVersion(3,3);
    glutInitContextProfile(GLUT_CORE_PROFILE);
    glutInit(&argc, argv);

    glutInitDisplayMode(GLUT_RGB);

    glutInitWindowSize(width, height);
    glutCreateWindow("Test");
    glutDisplayFunc(display);

    glutMainLoop();
}
Run Code Online (Sandbox Code Playgroud)

在不同情况下,我已经能够从GLSL程序二进制文件中提取NVfp5.0程序集:

  • 没有hide和没有的朴素案例precise
!!NVfp5.0
OPTION NV_internal;
OPTION NV_bindless_texture;
PARAM c[2] = { program.local[0..1] };
TEMP R0;
TEMP T;
TEMP RC, HC;
OUTPUT result_color0 = result.color;
SLT.F R0.x, fragment.position.y, {1, 0, 0, 0};
TRUNC.U.CC HC.x, R0;
IF NE.x;
MOV.F result_color0.xy, c[0];
MOV.F result_color0.zw, c[1].xyxy;
ELSE;
SLT.F R0.x, fragment.position.y, {2, 0, 0, 0};
TRUNC.U.CC HC.x, R0;
IF NE.x;
ADD.F R0.y, -c[0].x, c[0].x;
ADD.F R0.x, -c[1], c[1];
ADD.F R0.x, R0, R0.y;
ADD.F R0.x, R0, c[0].y;
ADD.F R0.y, R0.x, c[1];
ADD.F R0.x, c[0], c[1];
ADD.F result_color0.x, R0, R0.y;
ADD.F result_color0.y, R0, -R0;
MOV.F result_color0.zw, {0, 0, 0, 0}.x;
ENDIF;
ENDIF;
END
Run Code Online (Sandbox Code Playgroud)
  • 的情况precise(请注意,除了.PREC“指令”中的后缀以外,其他都没有更改):
!!NVfp5.0
OPTION NV_internal;
OPTION NV_bindless_texture;
PARAM c[2] = { program.local[0..1] };
TEMP R0;
TEMP T;
TEMP RC, HC;
OUTPUT result_color0 = result.color;
SLT.F R0.x, fragment.position.y, {1, 0, 0, 0};
TRUNC.U.CC HC.x, R0;
IF NE.x;
MOV.F result_color0.xy, c[0];
MOV.F result_color0.zw, c[1].xyxy;
ELSE;
SLT.F R0.x, fragment.position.y, {2, 0, 0, 0};
TRUNC.U.CC HC.x, R0;
IF NE.x;
ADD.F.PREC R0.y, -c[0].x, c[0].x;
ADD.F.PREC R0.x, -c[1], c[1];
ADD.F.PREC R0.x, R0, R0.y;
ADD.F.PREC R0.x, R0, c[0].y;
ADD.F.PREC R0.y, R0.x, c[1];
ADD.F.PREC R0.x, c[0], c[1];
ADD.F.PREC result_color0.x, R0, R0.y;
ADD.F.PREC result_color0.y, R0, -R0;
MOV.F result_color0.zw, {0, 0, 0, 0}.x;
ENDIF;
ENDIF;
END
Run Code Online (Sandbox Code Playgroud)
  • 使用的情况hide确实有效,并且显然具有不同的算术运算序列:
!!NVfp5.0
OPTION NV_internal;
OPTION NV_bindless_texture;
PARAM c[3] = { program.local[0..2] };
TEMP R0, R1;
TEMP T;
TEMP RC, HC;
OUTPUT result_color0 = result.color;
SLT.F R0.x, fragment.position.y, {1, 0, 0, 0};
TRUNC.U.CC HC.x, R0;
IF NE.x;
MOV.F result_color0.xy, c[1];
MOV.F result_color0.zw, c[2].xyxy;
ELSE;
SLT.F R0.x, fragment.position.y, {2, 0, 0, 0};
TRUNC.U.CC HC.x, R0;
IF NE.x;
ADD.F R0.x, c[1], c[2];
MAD.F R0.y, R0.x, c[0].x, -c[1].x;
ADD.F R0.z, R0.x, -R0.y;
ADD.F R0.z, -R0, c[1].x;
ADD.F R0.y, -R0, c[2].x;
ADD.F R0.y, R0, R0.z;
ADD.F R0.y, R0, c[1];
ADD.F R0.y, R0, c[2];
ADD.F R1.x, R0, R0.y;
MAD.F R0.x, R1, c[0], -R0;
MOV.F R1.zw, {0, 0, 0, 0}.x;
ADD.F R1.y, R0, -R0.x;
MOV.F result_color0, R1;
ENDIF;
ENDIF;
END
Run Code Online (Sandbox Code Playgroud)

And*_*SFT -2

你的着色器没有问题。ds_add() 代码没有任何可以在编译时合并的操作。通常加法和乘法/除法合并。但您的代码只有添加操作。

更新:

  1. 在这种情况下,在计算过程中所有变量都存储在 GPU 寄存器中。寄存器的操作顺序不依赖于代码或编译器。它甚至不仅仅依赖于硬件。它取决于 GPU 中当前运行的操作。

  2. 寄存器之间的浮点运算精度并非严格为 32 位。那时通常会更高。GPU 的实际精度是商业秘密。尽管变量存储在 32 位内存中,x86 FPU 的实际精度为 80 位或 128 位。

  3. 然而 GPU 并不是为非常精确的计算而设计的。该算法的作者知道这一点并实现了 32 位浮点数的双重思想对。如果需要提高精度,则必须使用带有 32 位浮点四元组的 long double。简单的“精确”没有帮助。

  • 那么你认为浮点数的加法和减法具有结合律吗?“-1 + 1 + 1e-10”与“-1 + (1 + 1e-10)”怎么样?前者是`1e-10`,而后者是32位`float`的`0`。这正是我试图通过适当使用“精确”来解决的问题。 (4认同)