Ill*_*x5B 8 python optimization inference deep-learning tensorflow
我在keras中训练了一个模型,并且正在考虑修剪我的全连接网络。我对如何修剪图层有些迷惑。
《学习有效的神经网络的权重和连接》一书的作者说,它们为图层的阈值权重添加了掩码。我可以尝试做同样的事情,并微调训练好的模型。但是,它如何减少模型大小和计算数量?
根据评论中的讨论,这里是修剪神经网络的一层(权重矩阵)的方法。该方法的本质是k%根据其范数选择最小的权重(矩阵的元素),并将其设置为零。这样,可以将对应的矩阵视为稀疏矩阵,并且我们可以执行密集稀疏矩阵乘法,如果修剪了足够多的权重,该乘法会更快。
def weight_pruning(w: tf.Variable, k: float) -> tf.Variable:
"""Performs pruning on a weight matrix w in the following way:
- The absolute value of all elements in the weight matrix are computed.
- The indices of the smallest k% elements based on their absolute values are selected.
- All elements with the matching indices are set to 0.
Args:
w: The weight matrix.
k: The percentage of values (units) that should be pruned from the matrix.
Returns:
The unit pruned weight matrix.
"""
k = tf.cast(tf.round(tf.size(w, out_type=tf.float32) * tf.constant(k)), dtype=tf.int32)
w_reshaped = tf.reshape(w, [-1])
_, indices = tf.nn.top_k(tf.negative(tf.abs(w_reshaped)), k, sorted=True, name=None)
mask = tf.scatter_nd_update(tf.Variable(tf.ones_like(w_reshaped, dtype=tf.float32), name="mask", trainable=False), tf.reshape(indices, [-1, 1]), tf.zeros([k], tf.float32))
return w.assign(tf.reshape(w_reshaped * mask, tf.shape(w)))
Run Code Online (Sandbox Code Playgroud)
上面的方法修剪单个连接(权重)时,下面的方法从权重矩阵修剪整个神经元。即,该方法k%基于欧几里得范数选择最小的神经元(权重矩阵的列),并将其设置为零。
def unit_pruning(w: tf.Variable, k: float) -> tf.Variable:
"""Performs pruning on a weight matrix w in the following way:
- The euclidean norm of each column is computed.
- The indices of smallest k% columns based on their euclidean norms are selected.
- All elements in the columns that have the matching indices are set to 0.
Args:
w: The weight matrix.
k: The percentage of columns that should be pruned from the matrix.
Returns:
The weight pruned weight matrix.
"""
k = tf.cast(
tf.round(tf.cast(tf.shape(w)[1], tf.float32) * tf.constant(k)), dtype=tf.int32
)
norm = tf.norm(w, axis=0)
row_indices = tf.tile(tf.range(tf.shape(w)[0]), [k])
_, col_indices = tf.nn.top_k(tf.negative(norm), k, sorted=True, name=None)
col_indices = tf.reshape(
tf.tile(tf.reshape(col_indices, [-1, 1]), [1, tf.shape(w)[0]]), [-1]
)
indices = tf.stack([row_indices, col_indices], axis=1)
return w.assign(
tf.scatter_nd_update(w, indices, tf.zeros(tf.shape(w)[0] * k, tf.float32))
)
Run Code Online (Sandbox Code Playgroud)
最后,该Github存储库将通过此处介绍的修剪方法对MNIST数据集进行实验。
| 归档时间: |
|
| 查看次数: |
524 次 |
| 最近记录: |