Geo*_*ler 3 approximation rank window-functions apache-spark apache-spark-sql
我有一个类似于以下内容的数据框:
+---+-----+-----+
|key|thing|value|
+---+-----+-----+
| u1| foo| 1|
| u1| foo| 2|
| u1| bar| 10|
| u2| foo| 10|
| u2| foo| 2|
| u2| bar| 10|
+---+-----+-----+
Run Code Online (Sandbox Code Playgroud)
并希望得到以下结果:
+---+-----+---------+----+
|key|thing|sum_value|rank|
+---+-----+---------+----+
| u1| bar| 10| 1|
| u1| foo| 3| 2|
| u2| foo| 12| 1|
| u2| bar| 10| 2|
+---+-----+---------+----+
Run Code Online (Sandbox Code Playgroud)
目前,有类似的代码:
val df = Seq(("u1", "foo", 1), ("u1", "foo", 2), ("u1", "bar", 10), ("u2", "foo", 10), ("u2", "foo", 2), ("u2", "bar", 10)).toDF("key", "thing", "value")
// calculate sums per key and thing
val aggregated = df.groupBy("key", "thing").agg(sum("value").alias("sum_value"))
// get topk items per key
val k = lit(10)
val topk = aggregated.withColumn("rank", rank over Window.partitionBy("key").orderBy(desc("sum_value"))).filter('rank < k)
Run Code Online (Sandbox Code Playgroud)
然而,这段代码效率很低。窗口函数生成项目的总顺序并导致巨大的洗牌。
如何更有效地计算 top-k 项?也许使用近似函数,即类似于https://datasketches.github.io/或https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html的草图
这是推荐系统的经典算法。
case class Rating(thing: String, value: Int) extends Ordered[Rating] {
def compare(that: Rating): Int = -this.value.compare(that.value)
}
case class Recommendation(key: Int, ratings: Seq[Rating]) {
def keep(n: Int) = this.copy(ratings = ratings.sorted.take(n))
}
val TOPK = 10
df.groupBy('key)
.agg(collect_list(struct('thing, 'value)) as "ratings")
.as[Recommendation]
.map(_.keep(TOPK))
Run Code Online (Sandbox Code Playgroud)
您还可以在以下位置查看源代码:
TopItemsPerUser.scala
,这里有 Spark 或 Scio 的几种解决方案TopByKeyAggregator.scala
被认为是使用其推荐算法时的最佳实践,但看起来他们的示例仍在使用RDD
。import org.apache.spark.mllib.rdd.MLPairRDDFunctions._
sc.parallelize(Array(("u1", ("foo", 1)), ("u1", ("foo", 2)), ("u1", ("bar", 10)), ("u2", ("foo", 10)),
("u2", ("foo", 2)), ("u2", ("bar", 10))))
.topByKey(10)(Ordering.by(_._2))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
3549 次 |
最近记录: |