如何纠正 sklearn.naive_bayes 中的 sample_weight?

Lê *_*ành 1 python machine-learning scikit-learn

我执行Naive Bayessklearn不均衡的数据。我的数据有超过 16k 条记录和 6 个输出类别。

我试图用sample_weight计算出的模型来拟合模型sklearn.utils.class_weight

sample_weight收到这样的:

样本权重 = [11.77540107 1.82284768 0.64688602 2.47138047 0.38577435 1.21389195]

import numpy as np

data_set = np.loadtxt("./data/_vector21.csv", delimiter=",")

inp_vec = data_set[:, 1:22]
out_vec = data_set[:, 22:]
#
# # Split dataset into training set and test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(inp_vec, out_vec, test_size=0.2)    # 80% training and 20% test
#
# class weight
from keras.utils.np_utils import to_categorical
output_vec_categorical = to_categorical(y_train)
from sklearn.utils import class_weight
y_ints = [y.argmax() for y in output_vec_categorical]
c_w = class_weight.compute_class_weight('balanced', np.unique(y_ints), y_ints)
cw = {}
for i in set(y_ints):
    cw[i] = c_w[i]

# Create a Gaussian Classifier
from sklearn.naive_bayes import *
model = GaussianNB()

# Train the model using the training sets
print(c_w)

model.fit(X_train, y_train, c_w)

# Predict the response for test dataset
y_pred = model.predict(X_test)

# Import scikit-learn metrics module for accuracy calculation
from sklearn import metrics

# Model Accuracy, how often is the classifier correct?
print("\nClassification Report: \n", (metrics.classification_report(y_test, y_pred)))
print("\nAccuracy: %.3f%%" % (metrics.accuracy_score(y_test, y_pred)*100))
Run Code Online (Sandbox Code Playgroud)

我收到了这条消息: ValueError: Found input variables with inconsistent numbers of samples: [13212, 6]

谁能告诉我我做错了什么以及如何解决?

非常感谢。

Viv*_*mar 5

sample_weightclass_weight是两个不同的东西。

顾名思义:

  • sample_weight将应用于单个样本(数据中的行)。所以 的长度sample_weight必须与您的X.

  • class_weight是让分类器对类给予更多的重视和关注。因此, 的长度class_weight必须与目标中的类数相匹配。

您正在计算class_weight而不是sample_weight通过使用sklearn.utils.class_weight,而是尝试将其传递给sample_weight。因此,尺寸不匹配错误。

请参阅以下问题以进一步了解这两个权重如何在内部相互作用: