当我将 WholeTextFiles() 与 pyspark 结合使用时,为什么 AWS 拒绝了我的连接?

sac*_*rus 2 python scala amazon-s3 apache-spark pyspark

我用

sc.wholeTextFiles(",".join(fs), minPartitions=200)
Run Code Online (Sandbox Code Playgroud)

在具有 96cpus 的单个 dataproc 节点上从 S3 下载 6k XMLs 文件(每个文件 50MB)。当我有 minPartitions=200 时,AWS 拒绝了我的连接,但是当我使用 minPartitions=50 时一切正常。为什么?

来自 Spark 的一些日志:

(...)
19/05/22 14:11:17 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:17 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:26 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:26 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:28 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:30 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor [.gz]
19/05/22 14:11:30 ERROR org.apache.spark.api.python.PythonRunner: Python worker exited unexpectedly (crashed)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 362, in main
    eval_type = read_int(infile)
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/serializers.py", line 717, in read_int
    raise EOFError
EOFError

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:588)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:1124)
    at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:1130)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.run(Task.scala:121)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.InterruptedIOException: getFileStatus on s3a://uni-swim-firehose/tfms/2019/04/03/10/SWIM-TFMS-2-2019-04-03-10-51-52-0fd9f05a-cbc5-4c1c-aef2-aa275ee3c404.gz: com.amazonaws.SdkClientException: Unable to execute HTTP request: Timeout waiting for connection from pool```
Run Code Online (Sandbox Code Playgroud)

Ram*_*ram 5

com.amazonaws.SdkClientException: Unable to execute HTTP request: Timeout waiting for connection from pool

wholeTextfiles根据您拥有的分区数量,每个文件都有与 s3 的单独客户端连接。并且默认为50

因此,您在 50 个 patitions 中没有任何问题。

如果您尝试增加到 200,则会出现上述异常。

解决方案 :

请参阅亚马逊文档:如何解决 Amazon EMR 中的“超时等待池中的连接”错误?

fs.s3.maxConnectionsemrfs-site.xml配置文件中。默认为 50。

由于您将 s3a 与 spark 结合使用,您可以尝试将最大连接数设为200以下,如示例中所示。


蟒蛇方式:

def create_spark_session(aws_access_key, aws_secret_key, app_name):
    try:

        spark = SparkSession.builder. \
            config("fs.s3a.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem"). \
            config("fs.s3a.awsAccessKeyId", aws_access_key). \
            config("fs.s3a.awsSecretAccessKey", aws_secret_key). \
            config("fs.s3a.fast.upload", "true"). \
            config("fs.s3a.multipart.size", "1G"). \
            config("fs.s3a.fast.upload.buffer", "disk"). \
            config("fs.s3a.connection.maximum", 200. \
            config("fs.s3a.attempts.maximum", 20). \
            config("fs.s3a.connection.timeout", 30). \
            config("fs.s3a.threads.max", 10). \
            config("fs.s3a.buffer.dir", "hdfs:///user/hadoop/temporary/s3a"). \
            appName(app_name). \
            getOrCreate()

        return spark
    except Exception as e:
        logging.error(e)
        sys.exit(-1)
Run Code Online (Sandbox Code Playgroud)

对于 Scala 用户:

/**
      * example getSparkSessionForS3
      * @return
      */
    def getSparkSessionForS3():SparkSession = {
  val conf = new SparkConf()
    .setAppName("testS3File")
    .set("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
    .set("spark.hadoop.fs.s3a.endpoint", "yourendpoint")
    .set("spark.hadoop.fs.s3a.connection.maximum", "200")
    .set("spark.hadoop.fs.s3a.fast.upload", "true")
    .set("spark.hadoop.fs.s3a.connection.establish.timeout", "500")
    .set("spark.hadoop.fs.s3a.connection.timeout", "5000")
    .set("spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version", "2")
    .set("spark.hadoop.com.amazonaws.services.s3.enableV4", "true")
    .set("spark.hadoop.com.amazonaws.services.s3.enforceV4", "true")

  val spark = SparkSession
    .builder()
    .config(conf)
    .getOrCreate()
  spark
}
Run Code Online (Sandbox Code Playgroud)

进一步阅读:

  1. amazon-s3-best-practice-and-tuning-for-hadoopspark-in-the-cloud ----第 38 张幻灯片
  2. https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/#aTimeout_waiting_for_connection_from_pool_when_writing_to_S3A

在 #2 中讨论了所有这些异常