Exo*_*mus 6 keras one-hot-encoding
我有 4 个需要预测的类,我使用 kerasto_categorical来实现这一点,我希望得到一个 4one-hot-encoded数组,但似乎我得到了 5 个值,[0]所有行都会出现一个附加值
dict = {'word': 1, 'feature_name': 2, 'feature_value': 3, 'part_number': 4}
Y = dataset['class'].apply(lambda label: dict[label])
print(Y.unique()) #prints [1 4 2 3]
train_x, test_x, train_y, test_y = model_selection.train_test_split(X, Y, test_size=0.2, random_state=0)
train_y = to_categorical(train_y)
print(train_y[0])# prints [0. 0. 1. 0. 0.]
Run Code Online (Sandbox Code Playgroud)
我试图建立的模型如下
model = Sequential()
model.add(Dense(10, input_dim=input_dim, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(4, activation='softmax'))
Run Code Online (Sandbox Code Playgroud)
但后来它一直在扔
ValueError: Error when checking target: expected dense_5 to have shape (4,) but got array with shape (5,)
Run Code Online (Sandbox Code Playgroud)
您需要对从 0 开始的类进行编号,如下所示:
dict = {'word': 0, 'feature_name': 1, 'feature_value': 2, 'part_number': 3}
Run Code Online (Sandbox Code Playgroud)
您可以使用 help() 命令获取该函数的描述
help(np_utils.to_categorical)
Run Code Online (Sandbox Code Playgroud)
:
Help on function to_categorical in module keras.utils.np_utils:
to_categorical(y, num_classes=None, dtype='float32')
Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
# Arguments
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
num_classes: total number of classes.
dtype: The data type expected by the input, as a string
(`float32`, `float64`, `int32`...)
# Returns
A binary matrix representation of the input. The classes axis
is placed last.
Run Code Online (Sandbox Code Playgroud)
小智 2
可能是keras版本错误。尝试更新它,因为这对我有用:
dict = {'word': 1, 'feature_name': 2, 'feature_value': 3, 'part_number': 4}
Y = np.random.randint(4, size=10)
print(np.unique(Y)) #prints [0 1 2 3]
train_y = np_utils.to_categorical(Y, num_classes=4)
print(train_y[0]) # prints [0. 0. 1. 0.]
Run Code Online (Sandbox Code Playgroud)
尝试从 0 开始字典,因为当 Keras 读取数据时以 0 作为参考。
dict = {'word': 0, 'feature_name': 1, 'feature_value': 2, 'part_number': 3}
Run Code Online (Sandbox Code Playgroud)
如果不起作用,尝试强制类数:
train_y = to_categorical(train_y, num_classes = 4)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3605 次 |
| 最近记录: |