我是 Python 新手,但想学一点,所以我决定创建一个与桌面输入进行模板匹配的程序。
有人能帮忙吗 ?如何编写与桌面流匹配的模板?
import time
import cv2
import mss
import numpy
template = cv2.imread('template.jpg', 0)
w, h = template.shape[::-1]
with mss.mss() as sct:
# Part of the screen to capture
monitor = {"top": 40, "left": 0, "width": 800, "height": 640}
while "Screen capturing":
last_time = time.time()
# Get raw pixels from the screen, save it to a Numpy array
img = numpy.array(sct.grab(monitor))
# Display the picture
# cv2.imshow("OpenCV/Numpy normal", img)
# Display the picture in grayscale
cv2.imshow('OpenCV/Numpy grayscale', cv2.cvtColor(img, cv2.COLOR_BGRA2GRAY))
# Print fps
print("fps: {}".format(1 / (time.time() - last_time)))
# Search template in stream
# Press "q" to quit
if cv2.waitKey(25) & 0xFF == ord("q"):
cv2.destroyAllWindows()
break
Run Code Online (Sandbox Code Playgroud)
我注意到的第一件事是您没有对模板图像应用任何边缘检测。边缘检测不是必需的,但对于查找模板图像的特征很有用。
假设我有以下图像:
为了精确检测上述模板图像,我应该应用边缘检测算法。
template = cv2.imread("three.png")
template = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
template = cv2.Canny(template, 50, 200)
Run Code Online (Sandbox Code Playgroud)
我还应该从桌面对流应用边缘检测。
img = sct.grab(mon)
gray = cv2.cvtColor(np.array(img), cv2.COLOR_BGR2GRAY)
edged = cv2.Canny(gray, 50, 200)
Run Code Online (Sandbox Code Playgroud)
检查模板与捕获的图像是否匹配
result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
(_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
Run Code Online (Sandbox Code Playgroud)
如果模板图像在桌面流中匹配,则获取坐标。
(_, maxLoc, r) = found
(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
(endX, endY) = (int((maxLoc[0] + w) * r), int((maxLoc[1] + h) * r))
Run Code Online (Sandbox Code Playgroud)
最后绘制用于显示位置的矩形:
cv2.rectangle(img, (startX, startY), (endX, endY), (180, 105, 255), 2)
Run Code Online (Sandbox Code Playgroud)
结果:
从上面我们可以看到我们的模板 3 值与来自桌面的流相匹配。
代码:
import time
import cv2
import numpy as np
import imutils
from mss import mss
template = cv2.imread("three.png")
template = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
template = cv2.Canny(template, 50, 200)
(h, w) = template.shape[:2]
start_time = time.time()
mon = {'top': 200, 'left': 200, 'width': 200, 'height': 200}
with mss() as sct:
while True:
last_time = time.time()
img = sct.grab(mon)
img = np.array(img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edged = cv2.Canny(gray, 50, 200)
found = None
for scale in np.linspace(0.2, 1.0, 20)[::-1]:
resized = imutils.resize(gray, width=int(gray.shape[1] * scale))
r = gray.shape[1] / float(resized.shape[1])
if resized.shape[0] < h or resized.shape[1] < w:
break
edged = cv2.Canny(resized, 50, 200)
cv2.imwrite("canny_image.png", edged)
result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
(_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
(_, maxLoc, r) = found
(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
(endX, endY) = (int((maxLoc[0] + w) * r), int((maxLoc[1] + h) * r))
cv2.rectangle(img, (startX, startY), (endX, endY), (180, 105, 255), 2)
print('The loop took: {0}'.format(time.time()-last_time))
cv2.imshow('test', np.array(img))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4832 次 |
| 最近记录: |