Asi*_*han 1 conv-neural-network lstm keras
我喜欢使用多层 ConvLSTM 模型来检查我的模型。我的训练数据的形状是
trainX.shape (5000, 200, 4) # testX.shape (2627, 200, 4)
Run Code Online (Sandbox Code Playgroud)
以下是我的工作正常的代码
print('trainX.shape', trainX.shape) # trainX.shape (5000, 200, 4)
print('testX.shape', testX.shape) # testX.shape (2627, 200, 4)
# reshape into subsequences (samples, time steps, rows, cols, channels)
samples, n_features = trainX.shape[0], trainX.shape[2]
n_steps, n_length = 8, 25
trainX = trainX.reshape((samples, n_steps, 1, n_length, n_features)) #
print('trainX.shape', trainX.shape) # (5000, 8, 1, 25, 4)
testX = testX.reshape((testX.shape[0], n_steps, 1, n_length, n_features))
print('testX.shape', testX.shape) # (2627, 8, 1, 25, 4)
# define model
model = Sequential()
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(n_outputs, activation='softmax'))
print(model.summary())
Run Code Online (Sandbox Code Playgroud)
我尝试添加另一个 convlstm2d 层,但出现错误。我想当我们添加另一个图层时,不需要输入形状。以下是我用来添加另一层的代码。
model = Sequential()
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features)))
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(n_outputs, activation='softmax'))
Run Code Online (Sandbox Code Playgroud)
我收到以下值错误。
ValueError: Input 0 is incompatible with layer conv_lst_m2d_11: expected ndim=5, found ndim=4
Run Code Online (Sandbox Code Playgroud)
对于 ConvLSTM(),神经网络的输入形状必须为[samples, timesteps, rows, columns, features].
我可以看到您正确地将数据输入到 ConvLSTM。
尝试使用return_sequences = True在所述第一ConvLSTM2D()和return_sequences = False在second ConvLSTM2D()层。
| 归档时间: |
|
| 查看次数: |
1019 次 |
| 最近记录: |