Nik*_*las 5 python keras tensorflow
我想编写一个带有张量流操作的 Keras 自定义层,需要批量大小作为输入。显然我在每个角落都在挣扎。
假设一个非常简单的层:(1)获取批量大小(2)根据批量大小创建一个 tf.Variable(我们称之为 my_var),然后使用一些 tf.random 操作来改变 my_var(3)最后,返回输入乘以我的_var
到目前为止我尝试过的:
class TestLayer(Layer):
def __init__(self, **kwargs):
self.num_batch = None
self.my_var = None
super(TestLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.batch_size = input_shape[0]
var_init = tf.ones(self.batch_size, dtype = x.dtype)
self.my_var = tf.Variable(var_init, trainable=False, validate_shape=False)
# some tensorflow random operations to alter self.my_var
super(TestLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
return self.my_var * x
def compute_output_shape(self, input_shape):
return input_shape
Run Code Online (Sandbox Code Playgroud)
现在创建一个非常简单的模型:
# define model
input_layer = Input(shape = (2, 2, 3), name = 'input_layer')
x = TestLayer()(input_layer)
# connect model
my_mod = Model(inputs = input_layer, outputs = x)
my_mod.summary()
Run Code Online (Sandbox Code Playgroud)
不幸的是,无论我在代码中尝试/更改什么,我都会遇到多个错误,其中大多数都带有非常神秘的回溯(ValueError:无法将部分已知的 TensorShape 转换为 Tensor:或 ValueError:不支持 None 值。)。
有什么一般性建议吗?提前致谢。
如果要创建 size 变量,则需要指定批量大小batch_size
。此外,如果要打印摘要,则摘要tf.Variable
必须具有固定形状 ( validatate_shape=True
),并且必须可广播才能成功乘以输入:
import tensorflow as tf
from tensorflow.keras.layers import Layer, Input
from tensorflow.keras.models import Model
class TestLayer(Layer):
def __init__(self, **kwargs):
self.num_batch = None
self.my_var = None
super(TestLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.batch_size = input_shape[0]
var_init = tf.ones(self.batch_size, dtype=tf.float32)[..., None, None, None]
self.my_var = tf.Variable(var_init, trainable=False, validate_shape=True)
super(TestLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
res = self.my_var * x
return res
def compute_output_shape(self, input_shape):
return input_shape
# define model
input_layer = Input(shape=(2, 2, 3), name='input_layer', batch_size=10)
x = TestLayer()(input_layer)
# connect model
my_mod = Model(inputs=input_layer, outputs=x)
my_mod.summary()
Run Code Online (Sandbox Code Playgroud)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_layer (InputLayer) (10, 2, 2, 3) 0
_________________________________________________________________
test_layer (TestLayer) (10, 2, 2, 3) 0
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
6796 次 |
最近记录: |