我有一个数据表,dt看起来像
location year value
NYC 2026 1
NYC 2026 2
NYC 2026 3
NYC 2026 4
NYC 2026 5
LA 2026 6
LA 2026 7
LA 2026 8
LA 2026 9
LA 2026 10
Run Code Online (Sandbox Code Playgroud)
我想对它们进行分组,city并year在value每组中的列中找到第二小的元素,所需的结果如下所示:
location year value
NYC 2026 2
LA 2026 7
Run Code Online (Sandbox Code Playgroud)
dt %>% grou_by(location, year) %>% nth(value, 2)
将无法正常工作。任何帮助表示赞赏。
上面的数据表可以通过以下方式创建:
dt <- structure(list(location = c("NYC", "NYC", "NYC","NYC", "NYC",
"LA", "LA", "LA", "LA", "LA"),
year = c(2026, 2026, 2026, 2026, 2026,
2026, 2026, 2026, 2026, 2026),
value = c(1, 2, 3, 4, 5,
6, 7, 8, 9, 10)),
class = "data.table",
row.names = c(NA, -10L))
Run Code Online (Sandbox Code Playgroud)
一种dplyr可能是:
df %>%
group_by(location) %>%
arrange(value) %>%
slice(2)
Run Code Online (Sandbox Code Playgroud)
在此,它按“位置”列进行分组,根据“值”列排列值,然后保留第二个元素。
location year value
<chr> <int> <int>
1 LA 2026 7
2 NYC 2026 2
Run Code Online (Sandbox Code Playgroud)
或者,如果“值”列中的值可以重复,则可以执行以下操作:
df %>%
group_by(location) %>%
distinct(value, .keep_all = TRUE) %>%
arrange(value) %>%
slice(2)
Run Code Online (Sandbox Code Playgroud)
或使用filter()代替slice():
df %>%
group_by(location) %>%
arrange(value) %>%
filter(row_number() == 2)
Run Code Online (Sandbox Code Playgroud)
出于同样考虑也可能重复:
df %>%
group_by(location) %>%
distinct(value, .keep_all = TRUE) %>%
arrange(value) %>%
filter(row_number() == 2)
Run Code Online (Sandbox Code Playgroud)
或使用filter()和dense_rank():
df %>%
group_by(location) %>%
filter(dense_rank(value) == 2)
Run Code Online (Sandbox Code Playgroud)
出于同样考虑也可能重复:
df %>%
group_by(location) %>%
distinct(value, .keep_all = TRUE) %>%
filter(dense_rank(value) == 2)
Run Code Online (Sandbox Code Playgroud)