Tim*_*Tim 1 python-3.x tensorflow tensor tensorflow2.0
model.fit 产生异常:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot update variable with shape [] using a Tensor with shape [32], shapes must be equal.
[[{{node metrics/accuracy/AssignAddVariableOp}}]]
[[loss/dense_loss/categorical_crossentropy/weighted_loss/broadcast_weights/assert_broadcastable/AssertGuard/pivot_f/_50/_63]] [Op:__inference_keras_scratch_graph_1408]
Run Code Online (Sandbox Code Playgroud)
型号定义:
model = tf.keras.Sequential()
model.add(tf.keras.layers.InputLayer(
input_shape=(360, 7)
))
model.add(tf.keras.layers.Conv1D(32, 1, activation='relu', input_shape=(360, 7)))
model.add(tf.keras.layers.Conv1D(32, 1, activation='relu'))
model.add(tf.keras.layers.MaxPooling1D(3))
model.add(tf.keras.layers.Conv1D(512, 1, activation='relu'))
model.add(tf.keras.layers.Conv1D(1048, 1, activation='relu'))
model.add(tf.keras.layers.GlobalAveragePooling1D())
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(32, activation='softmax'))
Run Code Online (Sandbox Code Playgroud)
输入特征形状
(105, 360, 7)
Run Code Online (Sandbox Code Playgroud)
输入标签形状
(105, 32, 1)
Run Code Online (Sandbox Code Playgroud)
编译语句
model.compile(optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
Run Code Online (Sandbox Code Playgroud)
Model.fit 语句
model.fit(features,
labels,
epochs=50000,
validation_split=0.2,
verbose=1)
Run Code Online (Sandbox Code Playgroud)
任何帮助将非常感激
您可以使用model.summary()来查看您的模型架构。
print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d (Conv1D) (None, 360, 32) 256
_________________________________________________________________
conv1d_1 (Conv1D) (None, 360, 32) 1056
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 120, 32) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 120, 512) 16896
_________________________________________________________________
conv1d_3 (Conv1D) (None, 120, 1048) 537624
_________________________________________________________________
global_average_pooling1d (Gl (None, 1048) 0
_________________________________________________________________
dropout (Dropout) (None, 1048) 0
_________________________________________________________________
dense (Dense) (None, 32) 33568
=================================================================
Total params: 589,400
Trainable params: 589,400
Non-trainable params: 0
_________________________________________________________________
None
Run Code Online (Sandbox Code Playgroud)
您的输出层的形状必须为(None,32),但您的输出层的形状labels为(105,32,1)。因此,您需要将形状更改为(105,32). np.squeeze()当我们想要从数组的形状中删除一维条目时使用函数。
| 归档时间: |
|
| 查看次数: |
2928 次 |
| 最近记录: |