MQa*_*ser 2 python opencv computer-vision motion
如何获取特定宽度和高度的网络摄像头视频源?
我对 OpenCV 库的经验为零,所以我需要这方面的帮助。此代码来自 geeksforgeeks.com。这是我现在唯一的东西。
我想要实现的是,我只想检测视频源指定区域中的运动。
import cv2, time, pandas
from datetime import datetime
static_back = None
motion_list = [ None, None ]
time = []
df = pandas.DataFrame(columns = ["Start", "End"])
video = cv2.VideoCapture(0)
while True:
check, frame = video.read()
motion = 0
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if static_back is None:
static_back = gray
continue
diff_frame = cv2.absdiff(static_back, gray)
thresh_frame = cv2.threshold(diff_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame, None, iterations = 2)
(cnts, _) = cv2.findContours(thresh_frame.copy(),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in cnts:
if cv2.contourArea(contour) < 50000:
continue
motion = 1
(x, y, w, h) = cv2.boundingRect(contour)
# making green rectangle arround the moving object
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
motion_list.append(motion)
motion_list = motion_list[-2:]
if motion_list[-1] == 1 and motion_list[-2] == 0:
time.append(datetime.now())
if motion_list[-1] == 0 and motion_list[-2] == 1:
time.append(datetime.now())
cv2.imshow("Gray Frame", gray)
cv2.imshow("Difference Frame", diff_frame)
cv2.imshow("Threshold Frame", thresh_frame)
cv2.imshow("Color Frame", frame)
key = cv2.waitKey(1)
if key == ord('q'):
# if something is movingthen it append the end time of movement
if motion == 1:
time.append(datetime.now())
break
for i in range(0, len(time), 2):
df = df.append({"Start":time[i], "End":time[i + 1]}, ignore_index = True)
df.to_csv("Time_of_movements.csv")
video.release()
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
似乎您想获得每帧特定区域的感兴趣区域 (ROI)。为了在 OpenCV 中做到这一点,我们可以使用边界框坐标裁剪图像。考虑(0,0)
作为图像与左上角左到右为x方向和顶部至底部作为y方向。如果我们有一个 ROI(x1, y1)
的左上角顶点和(x2,y2)
右下角顶点,我们可以通过以下方式裁剪图像:
ROI = frame[y1:y2, x1:x2]
Run Code Online (Sandbox Code Playgroud)
举例说明:
-------------------------------------------
| |
| (x1, y1) |
| ------------------------ |
| | | |
| | | |
| | ROI | |
| | | |
| | | |
| | | |
| ------------------------ |
| (x2, y2) |
| |
| |
| |
-------------------------------------------
Run Code Online (Sandbox Code Playgroud)
我们能够做到这一点,因为图像在 OpenCV 中存储为 Numpy 数组。这是 Numpy 数组索引和切片的绝佳资源。获得所需的 ROI 后,您可以在该区域进行运动检测。
归档时间: |
|
查看次数: |
1581 次 |
最近记录: |