Mun*_*ong 6 haskell binary-search-tree
我喜欢阅读格雷厄姆·赫顿(Graham Hutton)的迷人著作《在Haskell中编程》(第二版)。在第97章“ 8声明类型和类”的章节“ 8.4递归类型”的底部,我找到了二叉树的定义:
data Tree a = Leaf a | Node (Tree a) a (Tree a)
Run Code Online (Sandbox Code Playgroud)
这是很好的二叉树,但是我不能使用0、2、4、5、6、8,...元素。我写以下文件bst.hs:
data Tree a = Leaf a | Node (Tree a) a (Tree a)
deriving (Eq, Ord, Show, Read)
Run Code Online (Sandbox Code Playgroud)
我在文件夹中启动Haskell解释器并加载文件。
$ ghci
GHCi, version 8.6.4: http://www.haskell.org/ghc/ :? for help
Prelude> :load bst.hs
[1 of 1] Compiling Main ( bst.hs, interpreted )
Ok, one module loaded.
Run Code Online (Sandbox Code Playgroud)
好的,已加载一个模块。但是现在我尝试显示“叶子”或“树”(作为“叶子”或“节点”)很好。
*Main> show (Leaf 3)
"Leaf 3"
*Main> show (Node (Leaf 1) 2 (Leaf 3))
"Node (Leaf 1) 2 (Leaf 3)"
Run Code Online (Sandbox Code Playgroud)
但是我很不幸地失败了,只用{1,2}做树。我怎么写这样的树?我试过了:
*Main> show (Node (Leaf 1) 2 _)
<interactive>:4:23: error:
• Found hole: _ :: Tree Integer
• In the third argument of ‘Node’, namely ‘_’
In the first argument of ‘show’, namely ‘(Node (Leaf 1) 2 _)’
In the expression: show (Node (Leaf 1) 2 _)
• Relevant bindings include
it :: String (bound at <interactive>:4:1)
*Main> show (Node (Leaf 1) 2)
<interactive>:5:1: error:
• No instance for (Show (Tree Integer -> Tree Integer))
arising from a use of ‘show’
(maybe you haven't applied a function to enough arguments?)
• In the expression: show (Node (Leaf 1) 2)
In an equation for ‘it’: it = show (Node (Leaf 1) 2)
*Main> show (Node (Leaf 1) 2 (Node))
<interactive>:6:24: error:
• Couldn't match expected type ‘Tree Integer’
with actual type ‘Tree a0 -> a0 -> Tree a0 -> Tree a0’
• Probable cause: ‘Node’ is applied to too few arguments
In the third argument of ‘Node’, namely ‘(Node)’
In the first argument of ‘show’, namely ‘(Node (Leaf 1) 2 (Node))’
In the expression: show (Node (Leaf 1) 2 (Node))
Run Code Online (Sandbox Code Playgroud)
是的,我也许理解这是怎么回事,但是如何使之正确?
我的初学者问题的唯一答案可能是Tree在第99页上声明为其他建议的树:
data Tree a = Leaf | Node (Tree a) a (Tree a)
Run Code Online (Sandbox Code Playgroud)
但是如何用0、2、4,...元素制作原始树呢?或者,如果不可能的话,为什么不讨论呢?总有一定的道理,那么道理是什么?
二叉树的定义是完整的二叉树,即
如果更明确地命名类型,那就更清楚了:
data FullBinaryTree a = Leaf a | Node (FullBinaryTree a) a (FullBinaryTree a)
Run Code Online (Sandbox Code Playgroud)
这是一回事,但是通常您会看到二叉树的另一种定义,正如您所建议的那样,它也允许空节点。但是,空节点通常命名为Empty:
data BinaryTree a = Empty | Node (BinaryTree a) a (BinaryTree a) deriving (Eq, Show)
Run Code Online (Sandbox Code Playgroud)
两者都是数学上有效的二叉树,但显然并不相同。有了BinaryTree你可以用零,二,四,等值创建树:
Prelude> Empty
Empty
Prelude> Node Empty 42 $ Node Empty 1337 Empty
Node Empty 42 (Node Empty 1337 Empty)
Prelude> Node Empty 42 $ Node (Node Empty 1337 Empty) 2112 (Node Empty 91235 Empty)
Node Empty 42 (Node (Node Empty 1337 Empty) 2112 (Node Empty 91235 Empty))
Run Code Online (Sandbox Code Playgroud)