Daw*_*n17 15 neural-network pytorch
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(in_channels = 3, out_channels = 16),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(in_channels = 16, out_channels = 16),
nn.ReLU(),
Flatten(),
nn.Linear(4096, 64),
nn.ReLU(),
nn.Linear(64, 10))
def forward(self, x):
return self.net(x)
Run Code Online (Sandbox Code Playgroud)
我在没有扎实的神经网络知识的情况下创建了这个模型,我只是固定参数,直到它在训练中起作用。我不确定如何获得每一层的输出维度(例如第一层之后的输出维度)。
在 Pytorch 中是否有一种简单的方法可以做到这一点?
Ida*_*uri 15
例如,您可以将 torchsummary 用于 ImageNet 维度(3x224x224):
from torchvision import models
from torchsummary import summary
vgg = models.vgg16()
summary(vgg, (3, 224, 224)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 224, 224] 1,792
ReLU-2 [-1, 64, 224, 224] 0
Conv2d-3 [-1, 64, 224, 224] 36,928
ReLU-4 [-1, 64, 224, 224] 0
MaxPool2d-5 [-1, 64, 112, 112] 0
Conv2d-6 [-1, 128, 112, 112] 73,856
ReLU-7 [-1, 128, 112, 112] 0
Conv2d-8 [-1, 128, 112, 112] 147,584
ReLU-9 [-1, 128, 112, 112] 0
MaxPool2d-10 [-1, 128, 56, 56] 0
Conv2d-11 [-1, 256, 56, 56] 295,168
ReLU-12 [-1, 256, 56, 56] 0
Conv2d-13 [-1, 256, 56, 56] 590,080
ReLU-14 [-1, 256, 56, 56] 0
Conv2d-15 [-1, 256, 56, 56] 590,080
ReLU-16 [-1, 256, 56, 56] 0
MaxPool2d-17 [-1, 256, 28, 28] 0
Conv2d-18 [-1, 512, 28, 28] 1,180,160
ReLU-19 [-1, 512, 28, 28] 0
Conv2d-20 [-1, 512, 28, 28] 2,359,808
ReLU-21 [-1, 512, 28, 28] 0
Conv2d-22 [-1, 512, 28, 28] 2,359,808
ReLU-23 [-1, 512, 28, 28] 0
MaxPool2d-24 [-1, 512, 14, 14] 0
Conv2d-25 [-1, 512, 14, 14] 2,359,808
ReLU-26 [-1, 512, 14, 14] 0
Conv2d-27 [-1, 512, 14, 14] 2,359,808
ReLU-28 [-1, 512, 14, 14] 0
Conv2d-29 [-1, 512, 14, 14] 2,359,808
ReLU-30 [-1, 512, 14, 14] 0
MaxPool2d-31 [-1, 512, 7, 7] 0
Linear-32 [-1, 4096] 102,764,544
ReLU-33 [-1, 4096] 0
Dropout-34 [-1, 4096] 0
Linear-35 [-1, 4096] 16,781,312
ReLU-36 [-1, 4096] 0
Dropout-37 [-1, 4096] 0
Linear-38 [-1, 1000] 4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.59
Params size (MB): 527.79
Estimated Total Size (MB): 746.96
----------------------------------------------------------------
Run Code Online (Sandbox Code Playgroud)
Dav*_* Ng 12
一个简单的方法是:
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(in_channels = 3, out_channels = 16),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(in_channels = 16, out_channels = 16),
nn.ReLU(),
Flatten(),
nn.Linear(4096, 64),
nn.ReLU(),
nn.Linear(64, 10))
def forward(self, x):
for layer in self.net:
x = layer(x)
print(x.size())
return x
model = Model()
x = torch.randn(1, 3, 224, 224)
# Let's print it
model(x)
Run Code Online (Sandbox Code Playgroud)
但是要小心输入大小,因为您
nn.Linear在网络中使用。如果您的输入大小不是 ,则会导致 nn.Linear 的输入大小不兼容4096。
小智 6
for layer in model.children():
if hasattr(layer, 'out_features'):
print(layer.out_features)
Run Code Online (Sandbox Code Playgroud)
就像 David Ng 的回答一样,但有点短:
def get_output_shape(model, image_dim):
return model(torch.rand(*(image_dim))).data.shape
Run Code Online (Sandbox Code Playgroud)
在这个例子中,我需要找出最后一个线性层的输入:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.expected_input_shape = (1, 1, 192, 168)
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.maxpool1 = nn.MaxPool2d(2)
self.maxpool2 = nn.MaxPool2d(3)
# Calculate the input of the Linear layer
conv1_out = get_output_shape(self.maxpool1, get_output_shape(conv1, self.expected_input_shape))
conv2_out = get_output_shape(self.maxpool2, get_output_shape(conv2, conv1_out))
fc1_in = np.prod(list(conv2_out)) # Flatten
self.fc1 = nn.Linear(fc1_in, 38)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.maxpool2(x)
x = self.dropout1(x)
x = torch.flatten(x, 1) # flatten to a single dimension
x = self.fc1(x)
output = F.log_softmax(x, dim=1)
return output
Run Code Online (Sandbox Code Playgroud)
这样,如果我对之前的图层进行更改,就不必重新计算!
我的答案是基于这个答案
| 归档时间: |
|
| 查看次数: |
22386 次 |
| 最近记录: |