我在哪里可以找到 Firebase Analytics 中的平均会话持续时间。如何通过 Bigquery 提取此指标

Ram*_*n M 2 google-bigquery firebase-analytics

  1. 在哪里可以找到平均。Firebase 分析中的会话持续时间指标?
  2. 如何提取平均值 来自 Bigquery 的会话持续时间指标数据?

平均 之前在 Firebase 分析仪表板中可用的会话持续时间指标。但现在,它在 Firebase 分析仪表板中不可用。现在,我们只看到“每位用户的参与度”。是每个用户和平均的参与度。会话时长 两者相同吗?如何提取平均值 Fiebase 分析的会话持续时间?如何在 Bigquery 中查询以提取 Avg. Firebase 的会话持续时间指标。 在此处输入图片说明

Maj*_*sen 5

每个用户的参与度与平均互动度不同。会话持续时间。每个用户的参与度是指用户在一天内在应用中花费的所有时间,而不是在会话中。

  1. 你可以找到平均。Firebase Analytics 中最新版本下的会话持续时间。

  2. 这是用于计算 avg 的查询。BigQuery 中的会话长度:

with timeline as
(
  select 
    user_pseudo_id
    , event_timestamp
    , lag(event_timestamp, 1) over (partition by user_pseudo_id order by event_timestamp) as prev_event_timestamp
  from 
    `YYYYY.analytics_XXXXX.events_*`
  where
    -- at first - a sliding period - how many days in the past we are looking into:
    _table_suffix
           between format_date("%Y%m%d", date_sub(current_date, interval 10 day))
           and     format_date("%Y%m%d", date_sub(current_date, interval 1 day))
) 
, session_timeline as 
(
  select 
    user_pseudo_id
    , event_timestamp
    , case 
        when 
           -- half a hour period - a threshold for a new 'session'
           event_timestamp - prev_event_timestamp >= (30*60*1000*1000)
             or
           prev_event_timestamp is null 
          then 1
          else 0 
      end as is_new_session_flag
  from 
    timeline
)
, marked_sessions as
(
  select 
    user_pseudo_id
    , event_timestamp
    , sum(is_new_session_flag) over (partition by user_pseudo_id order by event_timestamp) AS user_session_id
  from session_timeline
)
, measured_sessions as
(
  select
    user_pseudo_id
    , user_session_id
    -- session duration in seconds with 2 digits after the point
    , round((max(event_timestamp) - min(event_timestamp))/ (1000 * 1000), 2) as session_duration
  from 
    marked_sessions
  group by
    user_pseudo_id
    , user_session_id
  having 
    -- let's count only sessions longer than 10 seconds
    session_duration >= 10
)
select 
  count(1)                          as number_of_sessions
  , round(avg(session_duration), 2) as average_session_duration_in_sec
from 
  measured_sessions
Run Code Online (Sandbox Code Playgroud)

有关如何获取 event_date 和 app_info.id 的其他问题,请参阅以下查询:

with timeline as
(
  select 
     event_date,app_info.id,user_pseudo_id
    , event_timestamp
    , lag(event_timestamp, 1) over (partition by user_pseudo_id order by event_timestamp) as prev_event_timestamp
  from 
    `<table>_*`
  where
    -- at first - a sliding period - how many days in the past we are looking into:
    _table_suffix
          between format_date("%Y%m%d", date_sub(current_date, interval 10 day))
          and     format_date("%Y%m%d", date_sub(current_date, interval 1 day))
) 
, session_timeline as 
(
  select 
    event_date,id,
    user_pseudo_id
    , event_timestamp
    , case 
        when 
           -- half a hour period - a threshold for a new 'session'
           event_timestamp - prev_event_timestamp >= (30*60*1000*1000)
             or
           prev_event_timestamp is null 
          then 1
          else 0 
      end as is_new_session_flag
  from 
    timeline
)
, marked_sessions as
(
  select 
     event_date,id, user_pseudo_id
    , event_timestamp
    , sum(is_new_session_flag) over (partition by user_pseudo_id order by event_timestamp) AS user_session_id
  from session_timeline
)
, measured_sessions as
(
  select
     event_date,id, user_pseudo_id
    , user_session_id
    -- session duration in seconds with 2 digits after the point
    , round((max(event_timestamp) - min(event_timestamp))/ (1000 * 1000), 2) as session_duration
  from 
    marked_sessions
  group by
     event_date, id, user_pseudo_id
    , user_session_id
  having 
    -- let's count only sessions longer than 10 seconds
    session_duration >= 10
)
select 
   event_date, id, count(1)                          as number_of_sessions
  , round(avg(session_duration), 2) as average_session_duration_in_sec
from 
  measured_sessions
  group by event_date, id
Run Code Online (Sandbox Code Playgroud)