Dun*_*rry 11 python machine-learning
我在jupyter笔记本上运行sketch_rnn.ipynb时,在加载环境以加载训练后的数据集时,返回错误“ allow_pickle = False时无法加载对象数组”
这是Google开发人员在开发sketch_rnn算法(甚至在google colab中运行)时已经使用的代码。过去我自己在google colab上运行过它,但是它似乎无法在我自己的jupyter笔记本上运行
from magenta.models.sketch_rnn.sketch_rnn_train import *
from magenta.models.sketch_rnn.model import *
from magenta.models.sketch_rnn.utils import *
from magenta.models.sketch_rnn.rnn import *
model_params.batch_size = 1
eval_model_params = sketch_rnn_model.copy_hparams(model_params)
eval_model_params.use_input_dropout = 0
eval_model_params.use_recurrent_dropout = 0
eval_model_params.use_output_dropout = 0
eval_model_params.is_training = 0
sample_model_params = sketch_rnn_model.copy_hparams(eval_model_params)
sample_model_params.max_seq_len = 1
return [model_params, eval_model_params, sample_model_params]
[train_set, valid_set, test_set, hps_model, eval_hps_model,
sample_hps_model] = load_env_compatible(data_dir, model_dir)
Run Code Online (Sandbox Code Playgroud)
我期望输出是
INFO:tensorflow:Downloading http://github.com/hardmaru/sketch-rnn-
datasets/raw/master/aaron_sheep/aaron_sheep.npz
INFO:tensorflow:Loaded 7400/300/300 from aaron_sheep.npz
INFO:tensorflow:Dataset combined: 8000 (7400/300/300), avg len 125
INFO:tensorflow:model_params.max_seq_len 250.
total images <= max_seq_len is 7400
total images <= max_seq_len is 300
total images <= max_seq_len is 300
INFO:tensorflow:normalizing_scale_factor 18.5198.
Run Code Online (Sandbox Code Playgroud)
但这给了我
ValueError: Object arrays cannot be loaded when allow_pickle=False
Run Code Online (Sandbox Code Playgroud)
Sal*_*ngo 14
这段代码解决了我这边的问题。
# Downgrate numpy to fix a problem
!pip install numpy==1.16.2
import numpy as np
print(np.__version__)
Run Code Online (Sandbox Code Playgroud)
我只是将numpy降级,因为问题是由于某些内部冲突引起的。
所以我认为这只是由于numpy对load()的更改而浮出水面,如果您观察到发生错误的行,它引用的是类似
with np.load(path) as f:
x_train, labels_train = f['x_train'], f['y_train']
x_test, labels_test = f['x_test'], f['y_test']
Run Code Online (Sandbox Code Playgroud)
但是Keras源代码,例如在第58行:https : //github.com/keras-team/keras/blob/master/keras/datasets/imdb.py
现在使用
with np.load(path, allow_pickle=True) as f:
x_train, labels_train = f['x_train'], f['y_train']
x_test, labels_test = f['x_test'], f['y_test']
Run Code Online (Sandbox Code Playgroud)
其中,np.load(path)成为np.load(path, boolean)
从简短的阅读中可以看出,的增加pickles与安全性有关,因为它pickles可以包含将在加载某些内容时运行的任意Python代码。(可能类似于执行SQL注入的方式)
用新的参数列表更新np.load之后,它就可以用于我的项目了
| 归档时间: |
|
| 查看次数: |
11493 次 |
| 最近记录: |