dek*_*iya 5 python google-cloud-dataflow apache-beam
我目前是在 Python 中使用 Apache Beam 和 Dataflow runner 的新手。我有兴趣创建一个发布到 Google Cloud PubSub 的批处理管道,我对 Beam Python API 进行了修改并找到了一个解决方案。然而,在我的探索过程中,我遇到了一些有趣的问题,让我很好奇。
目前,我成功地从 GCS 批量发布数据的光束管道如下所示:
class PublishFn(beam.DoFn):
def __init__(self, topic_path):
self.topic_path = topic_path
super(self.__class__, self).__init__()
def process(self, element, **kwargs):
from google.cloud import pubsub_v1
publisher = pubsub_v1.PublisherClient()
future = publisher.publish(self.topic_path, data=element.encode("utf-8"))
return future.result()
def run_gcs_to_pubsub(argv):
options = PipelineOptions(flags=argv)
from datapipes.common.dataflow_utils import CsvFileSource
from datapipes.protos import proto_schemas_pb2
from google.protobuf.json_format import MessageToJson
with beam.Pipeline(options=options) as p:
normalized_data = (
p |
"Read CSV from GCS" >> beam.io.Read(CsvFileSource(
"gs://bucket/path/to/file.csv")) |
"Normalize to Proto Schema" >> beam.Map(
lambda data: MessageToJson(
proto_schemas_pb2(data, proto_schemas_pb2.MySchema()),
indent=0,
preserving_proto_field_name=True)
)
)
(normalized_data |
"Write to PubSub" >> beam.ParDo(
PublishFn(topic_path="projects/my-gcp-project/topics/mytopic"))
)
Run Code Online (Sandbox Code Playgroud)
在这里,我试图让发布者在DoFn. 我尝试了以下方法。
一种。在 DoFn 中初始化发布者
class PublishFn(beam.DoFn):
def __init__(self, topic_path):
from google.cloud import pubsub_v1
batch_settings = pubsub_v1.types.BatchSettings(
max_bytes=1024, # One kilobyte
max_latency=1, # One second
)
self.publisher = pubsub_v1.PublisherClient(batch_settings)
self.topic_path = topic_path
super(self.__class__, self).__init__()
def process(self, element, **kwargs):
future = self.publisher.publish(self.topic_path, data=element.encode("utf-8"))
return future.result()
def run_gcs_to_pubsub(argv):
... ## same as 1
Run Code Online (Sandbox Code Playgroud)
湾 在 DoFn 之外初始化 Publisher,并将其传递给 DoFn
class PublishFn(beam.DoFn):
def __init__(self, publisher, topic_path):
self.publisher = publisher
self.topic_path = topic_path
super(self.__class__, self).__init__()
def process(self, element, **kwargs):
future = self.publisher.publish(self.topic_path, data=element.encode("utf-8"))
return future.result()
def run_gcs_to_pubsub(argv):
.... ## same as 1
batch_settings = pubsub_v1.types.BatchSettings(
max_bytes=1024, # One kilobyte
max_latency=1, # One second
)
publisher = pubsub_v1.PublisherClient(batch_settings)
with beam.Pipeline(options=options) as p:
... # same as 1
(normalized_data |
"Write to PubSub" >> beam.ParDo(
PublishFn(publisher=publisher, topic_path="projects/my-gcp-project/topics/mytopic"))
)
Run Code Online (Sandbox Code Playgroud)
使发布者跨DoFn方法共享的两次尝试都失败了,并显示以下错误消息:
File "stringsource", line 2, in grpc._cython.cygrpc.Channel.__reduce_cython__
Run Code Online (Sandbox Code Playgroud)
和
File "stringsource", line 2, in grpc._cython.cygrpc.Channel.__reduce_cython__
TypeError: no default __reduce__ due to non-trivial __cinit__
Run Code Online (Sandbox Code Playgroud)
我的问题是:
共享发布者的实现会提高光束管道的性能吗?如果是,那么我想探索这个解决方案。
为什么错误会出现在我失败的管道上?是不是因为在函数外初始化和传递自定义类对象给DoFn process?如果是由于这个原因,我如何实现一个管道,以便我能够在 DoFn 中重用自定义对象?
谢谢,您的帮助将不胜感激。
好的,Ankur 已经解释了我的问题出现的原因,并讨论了如何在 DoFn 上完成序列化。基于这些知识,我现在了解到有两种解决方案可以使自定义对象在 DoFn 中共享/可重用:
使自定义对象可序列化:这允许对象在 DoFn 对象创建期间初始化/可用(在 下__init__)。此对象必须是可序列化的,因为它将在创建 DoFn 对象(调用__init__)的管道提交期间被序列化。如何实现这一点在我的回答中回答如下。此外,我发现这个要求实际上与 [1][2] 下的 Beam 文档相关。
在外部的 DoFn 函数中初始化不可序列化对象__init__以避免序列化,因为在管道提交期间不会调用init之外的函数。Ankur 的回答中解释了如何完成此操作。
参考:
[1] https://beam.apache.org/documentation/programming-guide/#core-beam-transforms
小智 5
PublisherClient无法正确腌制。有关酸洗的更多信息请参见此处。PublisherClient在方法中初始化process可以避免对 进行酸洗PublisherClient。
如果目的是重用PublisherClient,我建议PublisherClient在 process 方法中初始化并self使用以下代码将其存储。
class PublishFn(beam.DoFn):
def __init__(self, topic_path):
self.topic_path = topic_path
super(self.__class__, self).__init__()
def process(self, element, **kwargs):
if not hasattr(self, 'publish'):
from google.cloud import pubsub_v1
self.publisher = pubsub_v1.PublisherClient()
future = self.publisher.publish(self.topic_path, data=element.encode("utf-8"))
return future.result()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1501 次 |
| 最近记录: |