2 python machine-learning scikit-learn
我正在使用组合在一起的推文的训练和测试数据集。(combi = train.append(test, ignore_index=True)。
训练 csv 手动标记了以下情绪:-1、0 和 1(基本上是负面、中性和正面),而测试没有。
我希望代码使用逻辑回归来输出 f1 分数,但出现问题: f1_score(yvalid, prediction_int) 被使用:
我的代码如下:
from sklearn.feature_extraction.text import CountVectorizer
bow_vectorizer = CountVectorizer(max_df=0.90, min_df=2, max_features=1000, stop_words='english')
bow = bow_vectorizer.fit_transform(combi['tidy_tweet'])
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(max_df=0.90, min_df=2, max_features=1000, stop_words='english')
tfidf = tfidf_vectorizer.fit_transform(combi['tidy_tweet'])
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
train_bow = bow[:1300,:]
test_bow = bow[1300:,:]
xtrain_bow, xvalid_bow, ytrain, yvalid = train_test_split(train_bow, train['label'], random_state=42, test_size=0.3)
lreg = LogisticRegression()
lreg.fit(xtrain_bow, ytrain) # training the model
prediction = lreg.predict_proba(xvalid_bow)
prediction_int = prediction[:,1] >= 0.3
prediction_int = prediction_int.astype(np.int)
f1_score(yvalid, prediction_int)
Run Code Online (Sandbox Code Playgroud)
在阅读相关文件,你会看到,对于参数的默认值average在f1_scoreIS binary; 因为在这里你没有指定它,它采用这个默认值,但是对于你的多类分类的情况是无效的(同意,这可能是一个糟糕的设计选择)。
正如错误消息所建议的那样,您应该明确选择并指定文档中显示的其他可用参数之一;这是来自带有虚拟多类数据的文档的示例:
from sklearn.metrics import f1_score
# dummy multi-class data, similar to yours:
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
f1_score(y_true, y_pred, average='macro')
# 0.26666666666666666
f1_score(y_true, y_pred, average='micro')
# 0.33333333333333331
f1_score(y_true, y_pred, average='weighted')
# 0.26666666666666666
f1_score(y_true, y_pred)
# ValueError: Target is multiclass but average='binary'. Please choose another average setting.
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8435 次 |
| 最近记录: |