我有一个data.frame这样的:
value condition
1 0.46 value > 0.5
2 0.96 value == 0.79
3 0.45 value <= 0.65
4 0.68 value == 0.88
5 0.57 value < 0.9
6 0.10 value > 0.01
7 0.90 value >= 0.6
8 0.25 value < 0.91
9 0.04 value > 0.2
structure(list(value = c(0.46, 0.96, 0.45, 0.68, 0.57, 0.1, 0.9,
0.25, 0.04), condition = c("value > 0.5", "value == 0.79", "value <= 0.65",
"value == 0.88", "value < 0.9", "value > 0.01", "value >= 0.6",
"value < 0.91", "value > 0.2")), class = "data.frame", row.names = c(NA,
-9L))
Run Code Online (Sandbox Code Playgroud)
我想评估condition每一行的列中的字符串。
因此结果将如下所示。
value condition goal
1 0.46 value > 0.5 FALSE
2 0.96 value == 0.79 FALSE
3 0.45 value <= 0.65 TRUE
4 0.68 value == 0.88 FALSE
5 0.57 value < 0.9 TRUE
6 0.10 value > 0.01 TRUE
7 0.90 value >= 0.6 TRUE
8 0.25 value < 0.91 TRUE
9 0.04 value > 0.2 FALSE
Run Code Online (Sandbox Code Playgroud)
我想dplyr框架内有一个方便的NSE解决方案。我曾尝试用!!和expr()等。当尝试通过condition使用 子集时,我得到了一些有希望的结果
result <- df[0,]
for(i in 1:nrow(df)) {
result <- rbind(result, filter_(df[i,], bquote(.(df$condition[i]))))
}
Run Code Online (Sandbox Code Playgroud)
但是我不喜欢这种解决方案,这也不是我所追求的。
我希望有人能帮帮忙。
更新:我试图避免eval(parse(..))。
一种简单易行的解决方案是使用eval(parse...
library(dplyr)
df %>%
rowwise() %>%
mutate(goal = eval(parse(text = condition)))
# A tibble: 9 x 3
# value condition goal
# <dbl> <chr> <lgl>
#1 0.46 value > 0.5 FALSE
#2 0.96 value == 0.79 FALSE
#3 0.45 value <= 0.65 TRUE
#4 0.68 value == 0.88 FALSE
#5 0.570 value < 0.9 TRUE
#6 0.1 value > 0.01 TRUE
#7 0.9 value >= 0.6 TRUE
#8 0.25 value < 0.91 TRUE
#9 0.04 value > 0.2 FALSE
Run Code Online (Sandbox Code Playgroud)
不过,我建议在使用它之前阅读一些文章。
不完全确定您是否正在寻找类似的东西,但是,您也可以使用lazy_eval()from lazyeval:
df %>%
rowwise() %>%
mutate(res = lazy_eval(sub("value", value, condition)))
value condition res
<dbl> <chr> <lgl>
1 0.46 value > 0.5 FALSE
2 0.96 value == 0.79 FALSE
3 0.45 value <= 0.65 TRUE
4 0.68 value == 0.88 FALSE
5 0.570 value < 0.9 TRUE
6 0.1 value > 0.01 TRUE
7 0.9 value >= 0.6 TRUE
8 0.25 value < 0.91 TRUE
9 0.04 value > 0.2 FALSE
Run Code Online (Sandbox Code Playgroud)
即使它非常接近eval(parse(...)),也有可能使用parse_expr()from rlang:
df %>%
rowwise() %>%
mutate(res = eval(rlang::parse_expr(condition)))
Run Code Online (Sandbox Code Playgroud)